Уголев А.М. «Теория адекватного питания и трофология» скачать книгу бесплатно. Теория адекватного питания

1. Пища должна обеспечивать достаточное поступление в организм энергии с учетом возраста, пола, физиологического состояния и вида труда.

2. Пища должна содержать оптимальное количество и соотношение различных компонентов для процессов синтеза в организме (пластическая роль питательных веществ).

3. Пищевой рацион должен быть адекватно распределен в течение суток.

Лекция 18. Физиология терморегуляции.

По способности поддерживать постоянную температуру тела животные делятся на пойкилотермных, гомойотермных и гетеротермных.

Пойкилотермные организмы (от греч. poikilos - изменчивый) не способны поддерживать температуру тела на постоянном уровне, так как они вырабатывают мало тепла и имеют несовершенные механизмы его сохранения.

Гомойотермные организмы (от греч. homeo - подобный, одинаковый), к которым относится и человек, вырабатывают много тепла, отличаются относительным постоянством температуры тела, незначительно изменяющейся в течение суток.

Гетеротермные организмы (от греч. heteros - другой) отличаются тем, что колебания температуры их тела превышают границы, свойственные гомойотермным животным. Это характерно для ранних этапов онтогенеза, зимней спячки некоторых гомойотермных животных, а также для млекопитающих и птиц с очень малыми размерами тела.

Температурный фактор определяет скорость протекания ферментативных процессов, всасывания, проведения возбуждения и мышечного сокращения.

Известно, что в поверхностных и глубоких участках тела человека температура различна. Внутренние области тела, составляющие примерно 50 % его массы, названы «ядром». Сюда относят мозг, сердце, печень и другие внутренние органы. Температура «ядра» варьируют незначительно, составляя величину порядка 36,7-37°С. Вместе с тем в разных участках «ядра» показатели температуры могут несколько.

Для клинических целей оценка температуры «ядра» проводится в определенных, легко доступных участках тела, температура которых практически не отличается от температуры внутренних органов. Такими доступными участками являются прямая кишка, полость рта, подмышечная впадина. Известно, что оральная (подъязычная) температура обычно ниже ректальной на 0,2-0,5 °С, аксиллярная (в области подмышечной ямки) ниже на 0,5-0,8 °С. При плотном прижатии руки к грудной клетке граница внутреннего слоя «ядра» почти доходит до подмышечной впадины, однако для достижения этого должно пройти около 10 мин. Аксиллярная температура здорового человека равна 36,0- 36,9 °С.

Температура поверхностного слоя тела толщиной 2,5 см, называемого «оболочкой» тела, варьирует в разных областях тела при разной температуре окружающей среды. При комфортной окружающей температуре средняя температура кожи обнаженного человека составляет 33-34 °С. При этом температура кожи стопы значительно ниже температуры проксимальных участков нижних конечностей и в еще большей степени - туловища и головы. Температура кожи в области стопы в комфортных условиях может быть равна 24-28 °С, а при изменениях внешней температуры - 13-53 °С, что определяется двумя факторами - температурой внешней среды и кровоснабжением кожи стопы.



У большинства млекопитающих температура тела соответствует диапазону 36-39 °С, несмотря на широкие вариации размеров тела у различных животных. Интенсивность метаболизма (теплопродукции) определяется как массой тела, так и величиной отдачи тепла с поверхности тела. В соответствии с этим теплопродукция на 1 кг массы должна быть выше у животных с небольшими размерамитела и с большим, чем у крупных животных, отношением площади поверхности к величине массы тела.

Температура тела определяется соотношением двух процессов - теплопродукции и теплоотдачи. Когда они не соответствуют друг другу и возникает угроза изменений температуры тела, процессы регуляции в составе функциональной системы терморегуляции адаптивно меняют теплопродукцию (химическая терморегуляция) и теплоотдачу (физическая терморегуляция). Тем самым обеспечивается относительная стабильность температурной константы внутренней среды организма, что было названо К.Бернаром основой «свободной, независимой жизни». В самом деле, температура тела обнаженного человека может оставаться стабильной в течение нескольких минут при изменениях температуры окружающей среды в пределах 21-53 °С.

Под химической терморегуляцией понимают изменения интенсивности метаболических экзотермических реакций, в ходе которых образуется тепло. При действии на организм человека холода образование тепла может повыситься в 3-5 раз.

Различают сократительную и несократительную теплопродукцию.

Сократительная теплопродукция связана с произвольными и непроизвольными сокращениями скелетных мышц.

Произвольные сокращения могут привести к многократному увеличению теплообразования, при этом повышаются и теплопотери за счет усиления отдачи тепла конвекцией.

Одним из видов непроизвольной теплопродукции является дрожь - специфический тип мышечного сокращения, возникающий у человека при значительном снижении температуры внешней среды организма и повышающий образование тепла в несколько раз. В отличие от теплообразования при произвольных мышечных сокращениях теплообразование при дрожи является экономным способом теплопродукции, так как особый тип сократительной активности высокопороговых двигательных единиц при дрожи обеспечивает переход в тепловую энергию почти всей энергии мышечного сокращения.

Другим видом непроизвольной теплопродукции являются терморегуляторные тонические сокращения (терморегуляторный тонус), развивающиеся в области мышц спины, шеи и в некоторых других областях. Теплопродукция при этом возрастает примерно на 40-50 %. Терморегуляторные тонические сокращения скелетных мышц начинаются при снижении температуры внешней среды примерно на 2°С относительно уровня комфорта. Такие сокращения имеют характер зубчатого тетануса, близкого к режиму одиночных сокращений. Терморегуляторный тонус является более тонким средством повышения теплопродукции, чем два предыдущих.

Несократительный термогенез также является механизмом химической терморегуляции, значительно выраженным в адаптированном к холоду организме. Доля такого механизма в обеспечении прироста теплопродукции на холоде может составлять 50-70 %. Развивается это явление в различных тканях. Специфическим субстратом такой теплопродукции считается бурая жировая ткань, после удаления которой устойчивость организма к холоду существенно снижается. Масса бурой жировой ткани, обычно составляющая 1- 2 % массы тела, при адаптации к холоду может увеличиваться до 5 % массы тела. Уровень энергетического обмена данной ткани, выраженный на единицу массы, более чем втрое превышает уровень работающих мышц;

скорость окисления жирных кислот в бурой жировой ткани в 20 раз превышает эту ско­рость в белой жировой ткани.

Терморегуляторная роль бурой жировой ткани полностью неясна. Предполагают, что она является богатым источником свободных жирных кислот - субстрата окислительных реакций, скорость которых при действии холода возрастает. В самой бурой жировой ткани при действии холода растут кровоток и уровень обмена веществ, увеличивается температура, несмотря на снижение температуры кожи над этой тканью. Отсюда возникла популярная в настоящее время гипотеза о калориферной роли бурой жировой ткани: при действии холода она обогревает близлежащие крупные сосуды, направляющие кровь к головному мозгу. У взрослого человека эта ткань локализована в области шеи, в межлопаточной области, в средостении около аорты, крупных вен и симпатической цепочки. В зимнее время года у людей, работающих вне помещения, бурая жировая ткань гипертрофирована и более активна, чем в летнее время.

Теплоотдача осуществляется посредством внутреннего и внешнего потоков тепла. Более половины внутреннего потока от источников образования тепла к поверхности тела обеспечивается путем конвекции кровью, остальное тепло проводится через другие ткани. При этом теплопроводность ткани зависит от ее толщины и количества жировой клетчатки, а также от уровня кровотока в этом слое.

Роль кровотока связана с тем, что онможет значительно варьировать за счет изменений просвета сосудов, в частности состояния артериоло-венулярных анастомозов.

Кровоснабжение поверхностных участков тела играет весьма важную терморегуляторную роль, обеспечивая внешний поток тепла. «Игра» сосудов кожи пальцев может менять кровоток в ней в 100 раз. При полной вазодилатации теплоотдача может увеличиться в 8 раз по сравнению с уровнем полной вазоконстрикции.

Теплопроводность тканей, кроме того, определяется характером использования противоточной системы сосудов, которая имеется, например, в конечностях. Так, в условиях холода венозная кровь оттекает в основном не по поверхностным венам, как это бывает в тепле, а по глубоким венам. В результате венозная кровь согревается кровью параллельно проходящих рядом артерий и не охлаждается в той степени, как это бывает при по­верхностном потоке крови.

Однако значительное снижение кровотока в поверхностных слоях тела при действии холода может приводить к нарушению кровоснабжения этих тканей и отморожениям..

Наружный поток тепла обеспечивается путем его проведения, конвекции, излучения и испарения.

1. Если кожа теплее окружающего воздуха, происходит естественная конвекция, т.е. перемещение нагреваемого кожей слоя воздуха вверх и его замещение более холодным воздухом. Форсированная конвекция, имеющая место при движениях тела или воздуха, значительно повышает интенсивность теплоотдачи.

2. При погружении человека в воду, температура которой ниже нейтральной (для большинства людей эта температура воды равна 31-36 °С), может в 2-4 раза повыситься наружный поток тепла за счет проведения, так как теплопроводность воды в 25 раз превышает теплопроводность воздуха. Основным механизмом отдачи тепла телом человека в воде является, однако, конвекция. За счет нее охлаждающее действие проточной воды в 50-100 раз превышает воздействие воздуха. Если температура воды близка к нулю («ледяная вода»), то тело человека охлаждается со скоростью 6 °С в час, а через 1- 3 ч может наступить смерть.

Плавание в воде, температура которой ниже уровня комфорта, значительно повышает отдачу тепла конвекцией. Увеличение содержания в организме жира может ограничить такой эффект.

3. Теплоотдача излучением обеспечивает­ся инфракрасными лучами с длиной волны 5-20 мкм. Эти лучи испускаются кожей при наличии на некотором расстоянии от нее предметов с более низкой температурой. Обнаженный человек может терять таким путем до 60 % тепла.

4. Около 20 % теплоотдачи тела человека в условиях комфортной температуры среды осуществляется за счет испарения. Этот путь является единственным способом отдачи тепла в окружающую среду, если ее температура оказывается равной температуре тела. Путем испарения 1 л воды человек может отдать треть всего тепла, вырабатываемого в условиях покоя в течение суток. Повышение скорости потоотделения является одним из основных механизмов адаптации к жаркому климату.

Существует два варианта испарения воды с поверхности тела: 1) испарение пота в результате его выделения, 2) испарение воды, оказавшейся на поверхности путем диффузии, - «неощутимые» потери воды. Последний механизм обеспечивает потери воды (до 600 мл в сутки) и тепла, например, через слизистые оболочки воздухоносных путей. Значительный вклад в обеспечение адаптивных механизмов изменения теплоотдачи вносит поведенческий компонент функциональной системы терморегуляции. В условиях холода поведенческая регуляция может быть весьма эффективной, существенно ограничивая контакт организма с внешней средой. Одежда человека примерно вдвое уменьшает потери тепла по сравнению с теплоотдачей обнаженного тела, одежда «арктического типа» может уменьшать отдачу тепла в 5-6 раз.

Зона температурного комфорта человека зависит от характера внешней среды, определяемого ее видом, температурой, влажностью (если этой средой является воздух), скоростью движения, наличием предметов с иной температурой по сравнению с температурой тела. В определенных условиях развивается состояние температурного комфорта, при этом активность механизмов терморегуляции оказывается минимальной. Зона комфорта (термонейтральная зона) при влажности воздуха около 50 % и равенстве температур воздуха и стен помещения для легко одетого человека, находящегося в положении сидя, соответствует температуре 25-26 °С. Для обнаженного человека температура комфорта в этих условиях смещается к 28 °С.

Адекватное питание необходимо для роста, поддержания массы тела, физиологических функций и обеспечения энергией. С пищей поступают следующие компоненты.

Вода необходима в достаточном количестве для предотвращения обезвоживания. В нормальных условиях ежедневная потеря воды из организма осуществляется следующим образом:

  • с фекалиями (100 мл);
  • с потом и выдыхаемым воздухом (600-1000 мл);
  • с мочой (1000-1500 мл).

Потери воды увеличиваются при тяжелой диарее (2000-5000 мл), лихорадке (200 мл/сут/1С) и при высокой температуре окружающей среды. Задняя доля гипофиза секретирует антидиуретический гормон для регулирования осмолярности мочи и достижения баланса между выведением и поступлением воды (общая потеря воды организмом должна быть равна ее поступлению в течение такого же периода времени).

Углеводы - это полигидроксиальдегиды, кетоны или другие сложные органические вещества, которые образуются в ходе реакции гидролиза. Углеводы существуют в нескольких формах (в зависимости от степени полимеризации):

  • (простые сахара) состоят из 1 единицы (например, или галактоза);
  • - это соединение 2 моносахаридов (например, сахарозы и лактозы);
  • олигосахариды содержат от 3 до 9 моносахаридов;
  • (например, крахмал, целлюлоза) состоят из большого числа моносахаридных единиц. Полисахариды депонируются в виде .

Углеводы важны как энергетический источник и как предшественники биосинтеза многих клеточных компонентов.

. - «кирпичи» для строительства белков. Пищевые белки, перевариваясь, высвобождают аминокислоты (заменимые и незаменимые). , или эссенциальные аминокислоты, не синтезируются в достаточных количествах в организме человека. Незаменимых аминокислот 9: , изолейцин, лейцин, и валин. , кроме перечисленных незаменимых аминокислот, требуется еще и . Аминокислоты необходимы для синтеза белков и других молекул (например, пептидных гормонов и порфиринов) и как источник энергии, т.к. аминокислоты могут быть источником гликонеогенеза в печени. Тканевые белки, расщепляясь и ресинтезируясь, постоянно подвергаются превращению, при этом каждый из белков в организме обладает своим собственным . Потребность в пищевых белках повышается во многих случаях, таких как период роста, после ожогов или травм.

Компоненты пищи

  • Белки

Незаменимые аминокислоты

  • Гистидин
  • Изолейцин
  • Лейцин
  • Лизин
  • Метионин
  • Фенилаланин
  • Треонин
  • Триптофан
  • Валин

Основное количество жира (98%), поступающего с пищей, существует в форме триацилглицеридов (триглицеридов), остальные 2% представлены фосфолипидами и холестерином. При полном гидролизе триацилглицеридов образуются глицерин и свободные жирные кислоты. Жирные кислоты можно разделить на две группы по числу двойных связей, которые они содержат:

  • насыщенные (без двойных связей) жирные кислоты;
  • ненасыщенные жирные кислоты.

Примерами насыщенных жирных кислот являются масляная и пальмитиновая кислоты. Ненасыщенные жирные кислоты можно разделить согласно степени ненасыщения на мононенасыщенные (например, олеиновая кислота) и полиненасыщенные (например, линолевая кислота, ). Линолевая кислота является единственной эссенциальной жирной кислотой и должна поступать с пищей. Жиры растительного происхождения состоят преимущественно из ненасыщенных жирных кислот и при комнатной температуре находятся в жидком состоянии. Каталитическое гидрирование жиров, называемое закаливанием, ведет к насыщению двойных ненасыщенных связей и превращению жидких масел в тугоплавкие жиры.

Жиры являются основным источником энергии из-за высокой энергоемкости на единицу массы в сравнении с углеводами и белками. Жиры накапливаются в виде липидных включений в специальных клетках - адипоцитах или жировых клетках. Помимо энергетической ценности, наличие жиров в рационе увеличивает вкусовую ценность пищи.

НЕУСВАИВАЕМЫЕ ВОЛОКНА . Неусваиваемые волокна в пище представлены главным образом целлюлозой (некрахмальными полисахаридами), которая помогает поддерживать моторику желудочно-кишечного тракта.

Определение энергетической ценности пищи

Энергия, поставляемая углеводами, белками и жирами, измеряется в килокалориях (ккал). Одна калория - это количество тепла, необходимое для повышения температуры 1 г воды на 1°С (с 14,5°С до 15,5°С). дают наибольшее количество энергии (табл. 22.1). Углеводы и жиры предотвращают утилизацию белков в качестве источника энергии. Пищевые белки предназначены для синтеза тканевых белков, если поступление углеводов и жиров достаточно для адекватного снабжения энергией.

Указаны средние значения вследствие больших вариаций химического состава этих нутриентов.

Средняя здорового взрослого человека с низкой физической активностью составляет около 2000 ккал, утраиваясь при значительной физической активности. Многие состояния определяют потребность в энергии, в частности беременность, лактация, физические упражнения, болезненные состояния и период роста. В пожилом возрасте обычно требуется меньшее потребление энергии.

ВИТАМИНЫ

Группа структурно связанных органических веществ, которые незаменимы для организма и должны поступать в небольших количествах. Хотя обычно источником витаминов является пища, существуют и другие источники. Например, синтезируется в коже под воздействием ультрафиолетового света, а и синтезируются кишечной микрофлорой.

Витамины отличаются от:

  • , которые являются незаменимыми нутриентами, необходимыми в небольших количествах в форме органических или неорганических соединений;
  • , которые являются органическими нутриентами, но необходимы в больших количествах.

Исторические корни открытия витаминов связаны с болезнями, возникающими при дефиците пищевых веществ. Выявление дефицитных состояний, которые в современном обществе наблюдаются достаточно редко, привело к открытию отдельных витаминов. Примеры дефицитных заболеваний - рахит, бери-бери и цинга. Изучение этих нарушений привело к открытию витаминов D, В и С соответственно.

Классификация

Витамины представляют собой гетерогенную группу органических веществ, различающихся химической структурой, источниками, суточными потребностями и механизмами действия. На основе характеристик растворимости выделяют два основных типа:

  • (витамины группы В, и др.);
  • (витамины A , D, Е и К) (табл. 22.4).

Подклассификация витаминов основывается на других свойствах, таких как способность к депонированию, механизм действия и потенциальная токсичность.

Способность накапливаться в организме у разных витаминов различна

Высокая способность накапливаться в организме характерна для жирорастворимых витаминов, низкая - для водорастворимых (табл. 22.5). Исключением из этого правила является витамин В12. В норме запасов этого витамина достаточно на 3-6 лет.

Витамины различаются по своей токсичности

Токсичность вследствие либо долгосрочного накопления в организме, либо краткосрочного применения большой дозы более вероятна у жирорастворимых витаминов (А и D). Отравление витаминами может произойти при потреблении избыточных количеств пищевых добавок.

Таблица 22.4 Классификация витаминов

Витамины как лечебные средства

Витамины поддерживают рост и нормальные функции организма

Имеются большие различия в суточной потребности в разных витаминах, и их неадекватное потребление связано со специфическими дефицитными заболеваниями. Различные группы населения, такие как беременные, строгие вегетарианцы или алкоголики, имеют высокий риск возникновения дефицита витаминов.

Действие витаминов

Витамины проявляют свою активность в качестве:

  • ферментов;
  • антиоксидантов;
  • гормонов (табл. 22.6).

Большинство водорастворимых витаминов действуют как коэнзимы специфических ферментов

В отсутствие специфических кофакторов многие ферменты неактивны. Кофакторами могут быть микроэлементы или органические молекулы. Если они функционируют как кофакторы, их называют коэнзимами. Коэнзимы участвуют в реакции будучи катализаторами, и в течение этого процесса они трансформируются в промежуточные формы и затем метаболизируются в свою активную форму (рис. 22.2). Большая часть водорастворимых витаминов действует как коэнзимы для специфических ферментов.

Рис. 22.2 Цикл витамина К. Витамин К действует как коэнзим в реакции превращения дезкарбоксипротромбина в протромбин, катализируемой карбоксилазой. В процессе карбоксилирования витамин К превращается в неактивный оксид, а затем обратно метаболизируется в активную форму. Восстановительный метаболизм неактивного эпоксида витамина К обратно в его активную гидрохиноновую форму чувствителен к варфарину. Варфарин и родственные по структуре средства блокируют у^карбокси-лирование, что приводит к инактивации биологически активных молекул, обеспечивающих коагуляцию.

Таблица 22.5 Примерные запасы жиро-и водорастворимых витаминов в организме

Таблица 22.6 Механизмы действия витаминов

Коэнзимы

Антиоксиданты

Витамин В1

Витамин С

Витамин А

Витамин В 2

Витамин Е

Витамин D

Витамин В 3

Витамин В 6

Витамин В 12

Витамин К

Фолиевая кислота

Пантотеновая кислота

Некоторые витамины действуют как антиоксиданты, другие - как гормоны

Витамин С и витамин Е функционируют как антиоксиданты, а жирорастворимые витамины А и D действуют как гормоны. Как для витамина А, так и для витамина D идентифицированы специфические участки связывания (рецепторы).

Рекомендуемые диетические нормы и ежедневное потребление

Рекомендуемые диетические нормы (РДН) витаминов, а также минералов и микроэлементов установлены в большинстве стран. РДН предназначены для поддержания максимальных запасов витаминов без проявления токсичности и обеспечения потребностей здоровых людей с учетом возраста и пола. Рекомендуемое ежедневное потребление витаминов основывается на ежедневном уровне потребления энергии в 2000 ккал (табл. 22.7). В США РДН периодически публикуют Food and Nutrition Board, National Academy of Sciences и National Research Council.

Таблица 22.7 Суточная потребность в витаминах

Взаимодействие витаминов с лекарственными средствами и пищей

Имеется ряд примеров взаимодействия обычной пищи с витаминами. Так, прием больших количеств фруктов, содержащих витамин С, нарушает абсорбцию витамина В12. Некоторые виды рыб и черника могут содержать тиаминазу, которая инактивирует витамин В1, яичный белок содержит авидин - гликопротеин, препятствующий абсорбции биотина. Взаимодействие лекарств с витаминами обсуждается при описании соответствующих витаминов. Например, длительное потребление невсасывающихся липидов, таких как минеральные масла (используемые в качестве слабительных средств), может существено снизить абсорбцию жирорастворимых витаминов и привести к витамин-дефицитному заболеванию. Другие примеры взаимодействий:

  • эстрогенсодержащие оральные контрацептивы с витаминами В1, В2 и фолиевой кислотой;
  • антибиотики (тетрациклин, неомицин) и сульфонамиды с витаминами В3, В12, С, К и фолиевой кислотой;
  • антиконвульсанты с витаминами D, К и фолиевой кислотой;
  • фенотиазины и трициклические антидепрессанты с витамином В2;
  • диуретики с витамином В1
  • изониазид и пеницилламин с витамином В6;
  • метотрексат с фолиевой кислотой.

Витамины как диетические добавки

Биологически активные добавки могут содержать лекарственные вещества, отпускаемые без рецепта, растительные экстракты и витамины. Такие вещества могут обладать побочными эффектами и взаимодействовать с лекарствами и пищевыми компонентами при неправильном применении.

В основном витаминные препараты потребляют дети, пожилые и физически активные взрослые лица. Около 40% взрослой популяции в США и Канаде ежедневно добавляют к своему рациону витамины. Однако польза витаминов, используемых с целями, отличными от коррекции симптомов дефицита, не установлена. При приеме жирорастворимых витаминов в дозах, превышающих РДН, возникает риск развития гипервитаминоза. Употребление мегадоз витамина С может вызвать образование почечных камней. Побочные эффекты, такие как повышенная свертываемость крови, могут возникнуть от витамина К, употребляемого больными, принимающими постоянные дозы варфарина.

ВОДОРАСТВОРИМЫЕ ВИТАМИНЫ

Витамин В1 (тиамин)

Рис. 22.3 Биохимические реакции с коэнзимным участием тиамина.

Содержится в сухих дрожжах, цельных зернах, цельном неполированном рисе и проростках пшеницы.

(витамин B1) в форме тиаминдифосфата (пирофосфата) является коэнзимом реакций углеводного метаболизма, в частности декарбоксилирования a-кетокислот, таких как пировиноградная и а-кетоглутаровая кислоты. Тиамин также является коэнзимом в транскетолазных реакциях пентозо-фосфатного шунта. Отдельные реакции, в которых участвует тиамин в качестве коэнзима, приведены на рис. 22.3.

Рис. 22.4 Больной бери-бери с периферической нейропатией. У некоторых пациентов развиваются висячая кисть и значительная слабость нижних конечностей (предоставлено A. Bryceson).

При дефиците витамина B1 развивается болезнь бери-бери (рис. 22.4). Это заболевание стало распространенным с увеличением потребления полированного белого риса. Полированный рис производят из шелушеного риса путем очищения от внешнего зародышевого слоя - материала, который и содержит основное количество витамина B1. В 80-х гг. XIX в. для лечения бери-бери у матросов военно-морских сил Японии использовали мясные и зерновые добавки, что и привело к открытию витамина B1. Выделяют две формы бери-бери:

  • сухую - связана с поражением нервной системы. Она характеризуется дегенеративной нейропатией с признаками нейрита, параличом и атрофией мышц (см. рис. 22.4);
  • влажную - связана с поражением сердечнососудистой системы и приводит к появлению отеков (отчасти вследствие сердечной недостаточности), учащенному сердцебиению, тахикардии с признаками нарушений на ЭКГ.

Дефицит витамина B1 может быть результатом не только его недостаточного потребления, но и чрезмерного употребления алкоголя, что вызывает энцефалопатию Вернике и психоз Корсакова. У младенцев бери-бери может проявиться при низком содержании тиамина в грудном молоке кормящих матерей.

Тиамин назначают для лечения и профилактики дефицита витамина В1, особенно у алкоголиков. В критических ситуациях (например, при острой энцефалопатии Вернике) его можно вводить внутривенно в дозах 50-100 мг. Прием глюкозы лицами с бессимптомным дефицитом тиамина может ускорить появление острых симптомов вследствие следующей реакции. В гликолитическом пути глюкоза катаболизируется до пирувата, проходя последовательно через 10 ферментно-катализируемых реакций. Пируват является эссенциальным промежуточным продуктом, участвующим как в катаболических (разложение до двуокиси углерода и воды в цикле лимонной кислоты), так и в анаболических реакциях (например, в синтезе аланина). Оксидативное декарбоксилирование пирувата до ацетил-КоА является необратимой реакцией, которая расходует тиамин и может привести к истощению тиамина в организме пациентов с дефицитом витамина В1, тем самым вызвая энцефалопатию. По этой причине при назначении глюкозы пациентам с подозреваемым дефицитом тиамина следует также назначать витамин B1.

Витамин В2 (рибофлавин)

Содержится в дрожжах, мясных продуктах, таких как печень, молочных продуктах и зеленых листьях овощей.

Рис. 22.5 Флавинадениндинуклеотид (ФАД) и его восстановленные формы.

В форме флавинмононуклеотида или флавинадениндинуклеотида функционирует как коэнзим для различных дыхательных флавопротеинов, которые катализируют окислительно-восстановительные реакции. Роль этого витамина связана со способностью его изоаллоксазинового кольца акцептировать два электрона, отданных атомами водорода, для образования соответствующих восстановленных форм (рис. 22.5). В восстановленной форме фермента сохраняется энергия.

Симптомы дефицита витамина В2: фарингит, стоматит, глоссит, хейлоз, себорейный дерматит и в некоторых случаях роговичная васкуляризация и амблиопия. Дефицит одного рибофлавина встречается редко и в большинстве случаев сочетается с дефицитом других водорастворимых витаминов. Фенотиазины, трициклические антидепрессанты и хинин (противомалярийное средство) ингибируют флавокиназу, которая превращает рибофлавин в флавинмононуклеотид. Следовательно, эти средства могут увеличить потребность пациентов в рибофлавине. Для лечения дефицита витамин В2 назначают в дозах 5-20 мг/сут.

Витамин В3 (ниацин, никотиновая кислота)

Витамин В3 был обнаружен в мясе, рыбе, плодах бобовых и цельных зернах. Триптофан может служить источником никотиновой кислоты, т.к. в организме он может трансформироваться до никотиновой кислоты в соотношении 60: 1 (т.е. 60 молекул триптофана дают 1 молекулу никотиновой кислоты).

В организме преобразуется в две физиологически активные формы: НАД и НАДФ. Основная функция витамина В3 состоит в участии в окислительно-восстановительных реакциях, в которых задействованы НАД или НАДФ. Это эссенциальные коэнзимы для многих дегидрогеназ цикла Кребса, вовлеченного в анаэробный углеводный метаболизм, а также белковый и липидный обмены. Например, одна из реакций в цикле лимонной кислоты нуждается в НАДФ как коэнзиме для оксидативного декарбоксилирования изоцитрата в a-кетоглутаровую кислоту (рис. 22.6).

Рис. 22.6 Оксидативное декарбоксилирование изоцитрата в а-кетоглутарат, использующее никотинамидадениндину-клеотидфосфат (НАДФ) в качестве коэнзима.

Пеллагра - болезнь, обусловленная дефицитом витамина В3, впервые была описана в 1735 г. Казалем как mal de la rosa (розовая болезнь) из-за шершавой, красного цвета кожи. Термин «пеллагра» произошел от итальянских слов agra (грубый, шероховатый) и pelle (кожа).

Первичными симптомами пеллагры являются дерматит, диарея и деменция (три «Л»)- Как правило, пеллагра встречается в популяциях, потребляющих в качестве главного источника белка зерновые, содержащие небольшие количества триптофана.

Для лечения пеллагры применяют ниацин. В фармакологических дозах, превышающих дозы, которые необходимы для его потребления как витамина, ниацин используют для лечения различных типов дислипопротеинемий.

В прошлом, когда ниацин назначали для лечения гиперлипидемии, он вызывал гиперемию и вазодилатацию. Эти эффекты уменьшались со временем или после приема аспирина. С длительным приемом ниацина, назначенным для лечения дислипопротеинемий, связывают тяжелую гепатотоксичность.

Витамин В6 (пиридоксин)

Обнаружен в мясе, рыбе, плодах бобовых, сухих дрожжах и цельных зернах.

Витамин В6 в виде пиридоксальфосфата является коэнзимом во множестве эссенциальных реакций, таких как метаболизм некоторых аминокислот (включая декарбоксилирование, трансаминирование и рацемизацию), серосодержащих и гидрокси-аминокислот, а также жирных кислот.

Предполагают, что низкий уровень ГАМК вследствие сниженной глутаматдекарбоксилазной активности является причиной судорог, наблюдаемых при дефиците витамина В6. Классические примеры, приведенные на рис. 22.7, иллюстрируют роль этого витамина в биосинтезе ГАМК и 5-гидрокситриптамина.

Рис. 22.7 Участие витамина В6 в двух биохимических реакциях, (а) Синтез гамма-аминомасляной кислоты (ГАМК) при наличии глутамата. (б) Биосинтез 5-гидрокситриптамина (серотонина) при наличии декарбоксилазы L-ароматических аминокислот.

Дефицит витамина В6 может быть обусловлен недостаточным питанием. Также он может встречаться у пациентов, принимающих пеницилламин, оральные контрацептивы и изониазид. Изониазид взаимодействует с пиридоксалем и образует пиридоксальгидразон, не обладающий коэнзимной активностью.

Несмотря на то что витамин В6 является эссенциальным, клинические синдромы изолированного дефицита встречаются редко и обусловлены взаимодействием с лекарствами. Витамин В6

Мы подошли к очень важному аспекту проблемы питания, который, в сущности, был одной из причин формирования новой теории.

Речь идет о том, что исключительно плодотворная классическая теория сбалансированного питания не была достаточно эволюционна. Точнее, она просто не была эволюционной и в полной мере биологичной.

Именно поэтому на смену ей приходит теория адекватного питания (процесс этот далеко не окончен).

Как следует из названия теории, ее смысл заключается, во-первых, в том, что питание должно быть не просто сбалансированным, но и подаваться в той форме, которая соответствует многим эволюционным особенностям организма. Это обстоятельство чрезвычайно важно, и его нельзя недоучитывать. Во-вторых, некоторые фундаментальные концепции питания человека должны быть рассмотрены и даже пересмотрены на основе новых достижений в области физиологии, биохимии, медицины и биологии в целом.

Ряд новых открытий в биологии и медицине продемонстрировал, что питание - не просто процесс снабжения организма пищевыми веществами , каким мы его представляли совсем недавно. Исчерпать эту сложную проблему крайне трудно. Поэтому попытаемся осветить лишь ее некоторые важнейшие стороны.

Основные постулаты теории адекватного питания

Кризис теории сбалансированного питания и открытие неизвестных ранее механизмов (лизосомное и мембранное пищеварение, различные виды транспорта пищевых веществ, общие эффекты кишечной гормональной системы), результаты сопоставления ряда характеристик безмикробных и обычных животных, данные прямых исследований влияния элементных диет на организм и т. д. привели к ревизии ряда основных положений теории сбалансированного питания. Благодаря такой ревизии была сформулирована новая теория адекватного питания и новые постулаты основополагающего значения.

Основные постулаты теории адекватного питания значительно отличаются от таковых теории сбалансированного питания. Однако один из основных постулатов является общим. Он заключается в том, что питание поддерживает молекулярный состав организма и обеспечивает его энергетические и пластические потребности.

Другие постулаты новой теории в сжатой форме охарактеризованы ниже.

1) Человек и высшие животные в метаболическом и трофическом отношениях представляют собой не организмы, а, в сущности, надорганизменные системы, включающие в себя, кроме макроорганизма, микрофлору его желудочно-кишечного тракта - микроэкологию, точнее, внутреннюю экологию организма, или эндоэкологию. Между организмом хозяина и микрофлорой его пищеварительного аппарата поддерживаются положительные симбионтные взаимоотношения (симбиоз - совместное существование).

2) Питание и ассимиляция (усвоение) пищи связаны не только с одним потоком во внутреннюю среду организма нутриентов, освобождающихся в результате переваривания пищи, но и с существованием по крайней мере еще трех потоков (рис. 4.4). Первый - жизненно важный поток регуляторных веществ - гормонов и гормоноподобных соединений. В сущности, этот поток состоит из двух - эндогенного и экзогенного. В состав первого входят гормоны, продуцируемые эндокринными клетками пищеварительного аппарата, в состав второго - так называемые экзогормоны, образующиеся преимущественно при расщеплении пищевых веществ в желудочно-кишечном тракте.

Второй поток состоит из балластных веществ пищи, модифицированных бактериальной флорой кишечника, и также биологически важен, так как с ним во внутреннюю среду организма поступают вторичные нутриенты. Третий - поток токсических соединений, формирующихся из токсических веществ пищи, а также токсических бактериальных метаболитов, образующихся в желудочно-кишечном тракте за счет деятельности бактериальной флоры. По-видимому, этот поток в норме физиологичен.


Рис. 4.4. Потоки веществ из желудочно-кишечного тракта во внутреннюю среду организма в соответствии с теорией адекватного питания. В отличие от теории сбалансированного питания, здесь при переваривании пищи формируются потоки вторичных нутриентов, токсинов, гормонов. Кроме того, пища стимулирует продукцию кишечных гормонов

3) Балластные вещества, или пищевые волокна, являются не балластом, а эволюционно важным компонентом пищи. Поток таких модифицированных микрофлорой желудочно-кишечного тракта веществ необходим для нормального функционирования пищеварительного аппарата и организма в целом.

4) Баланс пищевых веществ в организме достигается в результате освобождения конечных продуктов, способных к всасыванию, за счет полостного и мембранного (в ряде случаев внутриклеточного) пищеварения (рис. 4.5), а также вследствие синтеза новых соединений, в том числе незаменимых, бактериальной флорой кишечника. Относительная роль первичных и вторичных нутриентов варьирует в широких пределах.


Рис. 4.5. Соотношение между первичными нутриентами и бактериальными метаболитами при нормальном (вверху) и патологическом (внизу) состояниях организма (дефекты переваривания и всасывания.)

5) Роль питания в формировании физиологических и психологических стандартов человека еще более возрастает в результате открытия функций некоторых аминокислот как нейротрансмиттеров и как их предшественников.

Все перечисленные постулаты взаимосвязаны и образуют совокупность новых нетрадиционных представлений, подходов и методов исследования, а также технических приемов.

Часто теорию адекватного питания критикуют за то, что она слишком «пищеварительная». Это не так. Эта теория технологична. Именно поэтому она придает большое значение механизмам, обеспечивающим ассимиляцию пищи. Такой технологический подход позволяет рассматривать ряд проблем, которые недостаточно оценивались теорией сбалансированного питания, но которые имеют решающее значение с точки зрения теории адекватного питания.

По-видимому, новая теория, открывая большие возможности, вместе с тем накладывает и определенные ограничения, требуя согласования производственных технологий с естественными технологиями живых систем.

Охарактеризуем некоторые постулаты и следствия, вытекающие из теории адекватного питания, несколько более подробно.

Эндоэкология

Идея И. И. Мечникова о целесообразности подавления кишечной бактериальной флоры, еще недавно столь популярная, в настоящее время должна быть подвергнута коренному пересмотру. Действительно, при сопоставлении обычных и безмикробных, или стерильных (то есть лишенных кишечной микрофлоры), организмов оказалось, что последние в метаболическом, иммунологическом и даже нейрологическом отношениях резко отличаются от обычных. Так, у безмикробных животных значительно недоразвита иммунная защитная система, они более чувствительны к дефектному питанию, в частности к рационам с недостаточностью незаменимых аминокислот и витаминов.

Установлено также, что у людей, которые в силу каких-либо причин со дня рождения были отделены от окружающей среды и не имели собственной бактериальной флоры в кишечнике, пищевые потребности совсем иные, чем у обычных. Эти и другие факты свидетельствуют о важной роли микрофлоры желудочно-кишечного тракта в жизнедеятельности организма.

Эндоэкология представлена своеобразным набором тесно взаимодействующих бактерий, которые реализуют массу важных трансформаций, касающихся как эндогенных, так и экзогенных веществ. В результате трансформационных изменений указанных веществ, а также балластных пищевых волокон появляются дополнительные питательные вещества. Не менее важно, что популяция бактерий желудочно-кишечного тракта реализует особый вид гомеостаза - трофостаз (от греч. трофос - пища, питание), то есть поддержание постоянства трофического потока из пищеварительного тракта во внутреннюю среду организма.

В отсутствие бактериальной флоры наша трофическая устойчивость резко нарушается. Существенно также, что для поддержания нормальной эндоэкологии требуются контакты с достаточно большим коллективом людей, обладающим своей определенной бактериальной флорой. Нормальная эндоэкология может быть нарушена при различных воздействиях, что вызывает увеличение потока бактериальных метаболитов (рис. 4.5), провоцирует ряд тяжелых заболеваний.

Таким образом, в настоящее время совершенно очевидно, что мы постоянно получаем в какой-то мере дефектный пищевой рацион и наша бактериальная флора помогает нам устоять против создающихся неблагоприятных условий. В то же время бактериальная флора продуцирует некоторое количество токсических веществ.

Следовательно, мы все время подвергаемся двум воздействиям нашей эндоэкологии - положительным и отрицательным и находимся одновременно как бы в двух состояниях - здоровья и болезни. Поэтому создание идеальной пищи и идеального питания уже в свете этих обстоятельств совершенно нереально. Точно так же нереальна идея относительно возможности существования человека с редуцированным желудочно-кишечным трактом.

Регуляторные вещества

Следует иметь в виду удивительный факт: желудочно-кишечный тракт - это не только орган, обеспечивающий поступление необходимых веществ в организм. Это эндокринный орган, который, как выяснилось в последнее десятилетие, по своей мощности превосходит все остальные эндокринные железы, вместе взятые. Такое открытие по справедливости относится к одной из так называемых тихих революций в биологии и медицине.

Итак, эндокринная система желудочно-кишечного тракта больше, чем гипофиз, щитовидная железа, надпочечники, половые железы и другие эндокринные структуры, и продуцирует больше различных гормонов, чем упомянутые эндокринные органы. Удаление даже части эндокринной системы пищеварительного тракта приводит к гибели животного или к его чрезвычайно тяжелому заболеванию. Возникающая патология касается прежде всего общих, а не только пищеварительных функций организма.

Например, после удаления двенадцатиперстной кишки наблюдаются выраженные структурные изменения таких эндокринных органов, как щитовидная железа, кора надпочечников, гипофиз, гипоталамус. Это вполне понятно, так как клетки эндокринного аппарата желудочно-кишечного тракта вырабатывают более 30 гормонов и гормоноподобных соединений, действующих не только на пищеварительную систему, но и далеко за ее пределами.

Следовательно, питание - это процесс поступления не только пищевых веществ, но и химических сигналов, которые определенным образом управляют нашим организмом. Неудивительно поэтому, что у молодых организмов некоторый набор пищевых компонентов вызывает больший эффект, чем у старых. В последнем случае даже их более оптимальный набор может не вызывать ассимиляторных эффектов. Это объясняется тем, что, как мы подчеркивали, эндокринная система желудочно-кишечного тракта реализует не только пищеварительные эупептические, но и эутрофические эффекты, участвуя в регуляции ассимиляции пищи и ряда других жизненно важных функций.

Балластные вещества

В зависимости от эволюционных особенностей питания пища должна содержать большее или меньшее количество балластных структур, непосредственно не участвующих в обмене веществ организма. Роль этих балластных веществ, преимущественно пищевых волокон, содержащихся в овощах, фруктах, неочищенных злаках и ряде других продуктов, теорией сбалансированного питания не учитывалась. В частности, у человека в пище должно быть довольно значительное количество балласта. Выяснилось, что под влиянием теории сбалансированного питания промышленность стремилась получить, например, высокоочищенные муку, зерно, используемое для каш, и другие рафинированные продукты.

Однако оказалось, что пищевые волокна оказывают существенное влияние на деятельность желудочно-кишечного тракта, на электролитный обмен и на ряд других функций первостепенной важности. Обнаружено также, что в отсутствие балластных веществ бактериальная флора желудочно-кишечного тракта вырабатывает значительно больше токсических веществ, чем в норме, и менее эффективно выполняет защитную и другие функции. Более того, в ходе эволюции сами балластные вещества включились в ряд функций организма, в том числе в обмен стероидов. Так, потребление человеком цельнозернового хлеба приводит к снижению холестерина в крови, которое сопоставимо с результатом введения холестеринснижающих препаратов. Объяснение этому феномену состоит в том, что обмен холестерина, желчных кислот и стероидных гормонов взаимосвязаны.

Таким образом, пищевые волокна следует использовать как для нормализации эндоэкологии, так и для прямого воздействия на обмен холестерина, солей, водный обмен и т. д. Надо сказать, что это применяется сейчас достаточно часто.

На Западе широко развивается промышленное изготовление пищевых волокон. В нашей стране также перестали изготовлять, например, чистые фруктовые соки и вместо этого наладили приготовление различных изделий из фруктов и овощей, содержащих пищевые волокна. Действительно, один из самых ценных компонентов в яблоках или овощах - это пищевые волокна. То же самое можно сказать и о многих других продуктах.

Итак, в последнее время наблюдается быстрый прогресс наших знаний в области физиологии и биохимии питания и процессов ассимиляции пищи. Один из основных стимулов в развитии теоретических проблем питания заключается в практических потребностях первостепенной важности. Для этого прежде всего необходимо физиологическое обоснование оптимальных и допустимых норм питания для различных возрастных, профессиональных и других групп населения.

В свете этих актуальных задач существенно, что мы становимся свидетелями формирования новой междисциплинарной науки - трофологии , охватывающей важнейшие стороны биологических и физиологических процессов, объединяемых термином «питание и ассимиляция пищевых веществ». Для формирования и развития этой новой науки большое значение имеют проблемы пищи и питания, решение которых требует нетрадиционных подходов.

А.Ю. Барановский

15.4. ПИТАНИЕ

Питание представляет собой процесс поступ­ления, переваривания, всасывания и усвое­ния организмом пищевых веществ, необхо­димых для компенсации энерготрат, постро­ения и восстановления клеток и тканей тела, осуществления и регуляции функций орга­низма. В данном разделе рассматриваются только общие требования к соотношению питательных веществ в пищевом рационе и их общей калорийности. Питательными (пи­щевыми) веществами называют белки, жиры, углеводы, минеральные соли, витамины и воду, ассимилирующиеся в ходе обмена ве­ществ в организме. В большинстве случаев продукты питания представляют собой смесь ряда пищевых веществ.

А. Оптимальное питание должно способст­вовать поддержанию хорошего самочувствия, преодолению трудных для организма ситуа­ций, сохранению здоровья и обеспечению максимальной продолжительности жизни. У взрослых людей питание обеспечивает ста­бильную массу тела, у детей - нормальный рост и развитие.

По И.И. Мечникову, «питание есть ин­тимнейшее из общений человека с приро­дой», нарушение его может стать основой развития патологии. Недостаточный прием пищи или определенных ее компонентов может приводить к повышению утомляемос­ти, снижению массы тела и устойчивости к инфекциям, а у детей - к торможению роста и развития. С другой стороны, переедание может создавать дискомфорт в пищевари­тельной системе, способствовать появлению сонливости, снижению работоспособности и формированию риска развития ряда заболе­ваний. В частности, ожирение, связанное с увеличением калорийности пищи и гиподи­намией («спутниками цивилизации»), ведет к повышению артериального давления, разви­тию опасных заболеваний и ограничению продолжительности жизни.

Количество принимаемой пищи является для человека не только средством удовлетво­рения пищевой потребности, но может быть связано и с эмоциональным дискомфортом, подражанием, привычкой, поддержанием престижа, а также с национальными, религи­озными и другими обычаями. Навязывание еды детям в первые годы жизни может при­водить к формированию прочного следа (импринтинга) на последующие годы и по­вышению порога насыщения.

Б. Основными физиологическими принци­пами адекватного питания являются следую­щие. 1. Пища должна обеспечивать достаточ­ное поступление в организм энергии с уче­том возраста, пола, физиологического состо­яния и вида труда.

2. Пища должна содержать оптимальное количество и соотношение различных ком­понентов для процессов синтеза в организме (пластическая роль питательных веществ).

3. Пищевой рацион должен быть адекват­но распределен в течение суток. Рассмотрим более подробно каждый из этих принципов.

Принцип первый. Органические компонен­ты пищи - белки, жиры и углеводы - содер­жат химическую энергию, которая в организ­ме, преобразуясь, используется главным обра­зом для синтеза макроэргических соединений.

Общая энергоемкость рациона и характер питательных веществ должны соответство­вать потребностям организма. Калорийность рациона мужчин в среднем на 20 % больше рациона женщин, что связано главным обра­зом с более высоким содержание*! мышеч­ной ткани и большей долей физического труда у мужчин. Однако состояния беремен­ности и лактации повышают и у женщины потребность в питательных веществах в сред­нем на 20-30 %.

Важнейшим параметром, определяющим уровень энерготрат и калорийность пищевого рациона человека, является характер его труда. В табл. 15.3 представлены средние нор­мативы питания для человека с массой тела около 70 кг в соответствии с его профессией.

К первой группе профессий относятся большинство врачей, педагогов, диспетчеров, секретарей и др. Труд их является умствен­ным, физическая нагрузка незначительна. Вторую группу составляют работники сферы обслуживания, конвейерных производств, аг­рономы, медсестры, труд которых считается легким физическим. К третьей группе про­фессий относят продавцов продовольствен­ных магазинов, станочников, слесарей-на­ладчиков, врачей-хирургов, водителей транс­порта. Их труд приравнивается к среднетяже-

лому физическому. К четвертой группе отно­сятся строительные и сельскохозяйственные рабочие, механизаторы, работники нефтяной и газовой промышленности, труд которых является тяжелым физическим. Пятую группу представляют связанные с очень тяжелым физическим трудом профессии шахтеров, сталеваров, каменщиков, грузчиков.

Одним из критериев соответствия питания человека первому энергетическому принципу является сохранение у взрослого человека стабильной массы тела. Идеальной (долж­ной) ее величиной называют ту, которая обеспечивает наибольшую продолжитель­ность жизни. Нормальной называется вели­чина массы тела, отличающаяся от идеальной не более чем на 10 %.

Определение должной (идеальной) массы тела. Ориентировочно должную массу тела можно вычислить по методу Брака, вычитая 100 из показателя длины тела в сантиметрах. В связи с тем что многие исследователи счи­тают определенные таким методом показате­ли завышенными, была принята поправка на длину тела: если длина равна 166-175 см, из ее величины вычитают не 100, а 105, если же длина тела превышает 175 см, вычитают 110.

Большой популярностью пользуется ин­декс Кетле, рассчитываемый как частное от деления массы тела на квадрат длины тела. Результат самого большого в истории десяти­летнего проспективного наблюдения 2 млн норвежцев позволил установить, что величи­ны индекса Кетле в диапазоне 22-30 ед. со-

ответствуют наименьшей смертности. Одна­ко при повышении индекса до 24 и более растет заболеваемость ишемичеекой болез­нью сердца, так как это сочетается с харак­терными для данной патологии нарушени­ями гормонального статуса и липидного об­мена.

Согласно первому принципу, все энерготра­ты организма формально можно покрыть за счет какого-то одного питательного вещест­ва, например самого дешевого - углеводов (правило изодинамии). Однако это недопус­тимо, так как в организме при этом нарушат­ся процессы синтеза (пластическая роль пи­тательных веществ).

Принцип второй адекватного питания со­стоит в оптимальном количественном соот­ношении различных питательных веществ, в частности основных макронутриентов: бел­ков, жиров и углеводов. В настоящее время принято считать нормальным для взрослого человека соотношение массы этих веществ, соответствующее формуле 1: 1,2: 4,6.

Белки, или протеины (от греческого слова protos - первый), - важнейшая часть пищи человека. Органы и ткани, для которых ха­рактерен высокий уровень белкового обмена: кишечник, кроветворная ткань, - отличают­ся особенно высокой зависимостью от по­ступления белка с пищей. Так, при белко­вой недостаточности могут разви­ваться атрофия слизистой оболочки кишеч­ника, уменьшение активности пищевари­тельных ферментов и нарушение всасывания.

Снижение поступления в организм белков и нарушение всасывания железа приводят к угнетению кроветворения и синтеза имму­ноглобулинов, к развитию анемии и иммуно­дефицита, расстройству репродуктивной функции. Кроме того, у детей может разви­ваться нарушение роста, в любом возрасте - снижение массы мышечной ткани и печени, нарушение секреции гормонов.

Избыточное поступление с пищей белка может вызывать актива­цию обмена аминокислот и энергетического обмена, повышение образования мочевины и увеличение нагрузки на почечные структуры с последующим их функциональным истоще­нием. В результате накопления в кишечнике продуктов неполного расщепления и гниения белков возможно развитие интоксикации.

Количество белка в пищевом рационе должно быть не менее определенной величи­ны, называемой белковым минимумом и соот­ветствующей приему 25-35 г (у некоторых категорий людей - до 50 г и более) белка в сутки. Такая величина может поддержать

азотистое равновесие лишь в условиях покоя и комфортной внешней среды. Белковый оп­тимум должен быть большим. Если бы все белки пиши были полноценными, эта вели­чина находилась бы в пределах 30-55 г. Но, поскольку обычная пища человека содержит и неполноценные белки, общее количество белка в рационе должно соответствовать 11 - 13 % калорийности рациона, или 0,8-1,0 г на 1 кг массы тела. Этот норматив должен быть увеличен для детей до 1,2-1,5 г, для бе­ременных и кормящих женщин - до 2,0 г, для больных, перенесших обширные ожоги, тяжелые операции и истощающие болезни, - до 1,5-2,0 г на 1 кг массы тела. До 55-60 % белков пищи должно быть животного проис­хождения, так как именно эти белки являют­ся полноценными. В среднем для взрослого человека белковый оптимум составляет 100- 120г.

Жиры - не менее важный компонент ра­циона.

Потребность человека в жире не является столь определенной, как потребность в бел­ке. Это связано с тем, что значительная часть жировых компонентов тела может быть син­тезирована из углеводов. Оптимальным счи­тается поступление в организм взрослого че­ловека жира в количестве, соответствующем 30 % калорийности суточного рациона, с уче­том того, что жиры являются источником не­заменимых жирных кислот (см. далее), созда­ют условия для всасывания жирораствори­мых витаминов, обеспечивают приятный вкус пищи и удовлетворение ею.

В пожилом возрасте количество жира в су­точном пищевом рационе должно быть сни­жено до 25 % калорийности рациона.

Увеличение потребления ж и-р а отрицательно влияет на здоровье, осо­бенно при сочетании его с повышением общей энергетической ценности пищевого рациона. В таких условиях снижается ис­пользование собственного жира организма, может увеличиваться депонирование жира и возрастает масса тела. Это повышает риск развития сердечно-сосудистых и обменных заболеваний, а также рака кишечника, мо­лочной и предстательной желез.

Пищевая ценность жировых продуктов определяется жирно-кислотным их составом, в частности наличием в них незаменимых полиненасыщенных жирных кислот - лино-левой и линоленовой. Богатым их источни­ком являются рыба и растительные масла, которые должны составлять примерно "/3 (в пожилом возрасте - V2) всего жира суточно­го рациона. Так, потребность в линолевой

кислоте составляет в сутки от 2 до 6 г, кото­рые содержатся в 10-15 г растительного масла; для создания же оптимума рекоменду­ется прием 20-25 г растительного масла. По­требность в линоленовой кислоте составляет "/Ю потребности в линолевой, обычно она также удовлетворяется при суточном приеме 20-25 г растительного масла.

Разные растительные масла обладают не­одинаковым действием на липидный обмен ор­ганизма. Так, кукурузное и подсолнечное масло, содержащие преимущественно поли­ненасыщенные жирные кислоты, способст­вуют снижению концентрации холестерина и липопротеинов как низкой, так и высокой плотности и могут уменьшать риск развития ишемической болезни сердца.

Использование в питании свежей рыбы и соевого масла, содержащих много олигонена-сыщенных жирных кислот, приводит к сни­жению концентрации в плазме крови тригли-церидов, используемых, в частности, для синтеза холестерина. Кроме того, прием этих продуктов предупреждает превращение в тромбоцитах арахидоновой кислоты в тром-боксан А 2 и, напротив, ускоряет преобразо­вание этой кислоты в тромбоксан А 3 , что ог­раничивает вероятность внутрисосудистого тромбообразования и снижает риск развития сердечно-сосудистой патологии.

Оливковое масло, содержащее сравни­тельно высокие количества мононенасыщен­ных жирных кислот, в отличие от кукурузно­го и подсолнечного масла, не способствует снижению концентрации ЛПВП. Использо­вание в пищу такого масла эффективно огра­ничивает развитие атеросклероза и других сердечно-сосудистых заболеваний.

При ограничении поступления в организм продуктов из рыбы и растительного масла может нарушаться синтез из арахидоновой кислоты эйкозаноидов (местные гормоны) - простагландинов, тромбоксанов и лейкотри-енов, обладающих большим диапазоном вли­яний на функции организма; при этом также нарушаются свойства структурных (мембран­ных) липидов. У грудных детей, получающих вместо женского коровье молоко, содержа­щее в 12-15 раз меньше линолевой кислоты, результатом развития описанных выше изме­нений могут стать нарушения функций ки­шечника, развитие дерматитов и задержка роста.

Вместе с тем избыточный прием расти­тельного масла также нельзя считать жела­тельным. По данным эпидемиологических исследований, это сочетается с повышением частоты развития онкологических заболева-

ний, что, по-видимому, обусловлено образо­ванием в организме большого количества арахидоновой кислоты и ее промоторным (стимулирующим) действием на развитие очагов опухоли. Оливковое масло таким дей­ствием не обладает.

Углеводы не принадлежат к числу незаме­нимых факторов питания и могут синтезиро­ваться в организме из аминокислот и жира. Однако существует определенный минимум углеводов в пищевом рационе, соответствую­щий 150 г. Дальнейшее снижение количества углеводов может приводить к повышенному использованию для энергетических процес­сов жиров и белков, ограничению пластичес­ких функций этих веществ и накоплению токсичных метаболитов жирового и белково­го обмена. С другой стороны, избыточное потребление углеводов может способствовать повышению липогенеза и ожирению.

Большое значение для организма имеет со­став углеводов пищи, в частности количество легкоусвояемых и неусвояемых углеводов.

Систематическое потребление избыточно­го количества дисахаров и глюкозы, быстро всасывающихся в кишечнике, создает высо­кую нагрузку на эндокринные клетки подже­лудочной железы, секретирующие инсулин, что может способствовать истощению этих структур и развитию сахарного диабета. Зна­чительное повышение концентрации в крови глюкозы может ускорить развитие процессов гликации, т.е. образования в стенках крове­носных сосудов прочных соединений углево­дов с белками. В результате могут изменяться биофизические свойства сосудов, что выра­жается в снижении их растяжимости, а также в увеличении сопротивления кровотоку и по­вышении кровяного давления. Доля Сахаров не должна превышать 10-12 % углеводов су­точного рациона, что соответствует 50-100 г.

К неперевариваемым углеводам, или бал­ластным веществам (пищевые волокна), от­носятся полисахариды: целлюлоза, гемицел-люлоза, пектины и пропектины, содержа­щиеся в клеточных оболочках растительных тканей. Эти вещества не подвергаются гидро­лизу в пищеварительном тракте человека и, следовательно, не служат источником энер­гии и пластического материала, но их роль в питании человека весьма существенна. Выра­женное раздражающее действие клеточных оболочек на механорецепторы и железистые структуры кишечника определяет значитель­ный вклад этих компонентов пищи в стиму­ляцию секреторной функции кишечника и его моторной активности. Эти эффекты бал­ластных веществ ограничивают риск разви-

тия запора, геморроя, дивертикулов и рака кишечника. Кроме того, связывающие свой­ства пищевых волокон обеспечивают сниже­ние всасывания токсинов, канцерогенов и холестерина.

Однако пищевые волокна могут связывать и микроэлементы, и витамины, поэтому еже­дневный прием пищевых волокон в составе крупяных, бобовых, мучных изделий, фрук­тов и овощей не должен превышать 20-35 г.

Человек должен принимать также необхо­димое количество воды, минеральных солей и витаминов.

Принцип третий состоит в оптимальном разделении суточного рациона на 3-5 при­емов пищи с интервалами времени между ними по 4-5 ч. Рекомендуется следующее распределение суточной калорийности при четырехразовом питании: 25 % - первый за­втрак, 15 % - второй завтрак, 35 % - обед и 25 % - ужин. Если возможно лишь трехразо­вое питание, то оптимальным следует счи­тать такое распределение: 30, 45 и 25 %. Ужи­нать следует за 3 ч до отхода ко сну.

Прием пищи должен быть достаточно дли­тельным - не менее 20 мин при многократ­ном (до 30 раз) пережевывании каждой пор­ции плотной пищи, что обеспечивает более эффективное рефлекторное торможение центра голода. Так, даже у человека с фисту­лой пищевода поступление в полость рта пищи, не проходящей далее в желудок, может на 20-40 мин затормозить центр голо­да. Очевидно, оральные факторы: жевание, слюноотделение и глотание - каким-то об­разом способствуют количественной оценке принятой пищи и возбуждению центра насы­щения. Для реализации этой роли требуется стимуляция определенной длительности.

«Теорию адекватного питания» академик Александр Михайлович Уголев разработал на основе классической «Теории сбалансированного питания», дополнив ее некоторыми тезисами, исходя из строения организма, в частности кишечника. Проведя массу исследований и опытов, ему удалось составить целостное представление об основах правильного потребления пищи

Александр Михайлович Уголев родился в Екатеринославе, ныне Днепр, в 1926 году. Там же поступил в медицинский институт, где занялся наукой о сущности живого – физиологией. Учеба давалась успешно, поэтому уже в скором времени Уголев получил ученую степень Доктора медицинских наук и звание Академика АН СССР.

Кроме физиологии Александр Михайлович также преуспевал в области, связанной с вегетативной нервной системой и ее регуляции. Наиболее известным практическим опытом академика считается процесс так называемого самопереваривания, или аутолиза, свежей лягушки в желудочном соке живого организма. В результате проведенных исследований было установлено, что лягушатина в сыром виде может перевариться полностью гораздо быстрее, чем сваренная или жаренная. Более подробно об этом эксперименте можно прочитать в труде «Теория адекватного питания и трофология».


Мембранное пищеварение было выявлено академиком Уголевым в 1958 году. Тогда это научное открытие стало одним из самых значимых в СССР и было внесено в Государственный реестр открытий страны. Согласно данной теории пищеварение при помощи мембраны является универсальным процессом расщепления пищи до мельчайших элементов, которые после становятся пригодными к всасыванию. То есть в отличие от привычной двухэтапной схемы переваривания еды стало возможным рассмотрение схемы, состоящей из трех звеньев:

1.Потребление пищи, когда пищеварение начинается в полости рта

2.Переваривание еды в мембране

3.Последующее всасывание остатков продуктов

Данный процесс именуется, как пристеночное пищеварение, что стало открытием мирового масштаба. В дальнейшем эта теория успешно применялась на практике, что позволило привнести изменения в тактику и стратегию диагностирования и излечения заболеваний, связанных с желудочно-кишечным трактом человека.

Начиная с 1961 года, академик Уголев написал множество трудов, из которых было опубликовано 10. Главная работа его жизни, связанная с особенностями пищеварения и правильного питания, была издана в год его смерти – в 1991 году. Похоронен Александр Михайлович на Богословском кладбище в Санкт-Петербурге.


Основные тезисы «Теории адекватного питания»

Классической считается «Теория сбалансированного питания». Однако Уголев смог значительно расширить и дополнить уже устоявшееся мнение о правильности питания, опираясь на процесс эволюции и учитывая окружающую экологическую обстановку. После массы исследований и проведенных опытов появилась «Теория адекватного питания».

Согласно выдвинутому в ней мнению главные качества пищи в виде белков, жиров, углеводов, а также общей калорийности не могут считаться основными критериями ее ценности. Истинная ценность еды – самопереваривание в желудочном соке в совокупности с возможностью становиться пищей для микроорганизмов, находящихся в области кишечника и поставляющих организму нужные полезные элементы. Процесс пищеварения наполовину происходит при помощи ферментов, которые содержатся в самой еде, в то время как сок в желудке всего лишь запускает самопереваривание продуктов питания.

Благодаря опытам, проведенным на сырых и термически обработанных лягушках, удалось установить, что полезнее для организма с точки зрения процесса переваривания пищи есть свежие сырые продукты. Такая система питания получила название «сыроедение». Сейчас она очень распространена не только среди желающих быстрее похудеть и избавиться от лишних килограммов, но и у известных спортсменов, например, и многих других.


За правильное усваивание пищи отвечает микрофлора кишечного тракта, пользу которой могут приносить лишь определенные продукты питания. Ее значение в организме очень велико, поскольку она выполняет ряд важнейших функций:

— стимулирование выработки иммунитета, избавление от болезнетворных бактерий;

— облегчение процесса усваивания полезных веществ, например, таких, как железо и кальций;

— синтезирование витаминов, аминокислот и протеинов;

— активирование процессов щитовидки;

— полное снабжение внутренних органов необходимым количеством фолиевой кислоты, биотина и тиамина;

— расщепление холестерина;

— обеспечение быстрого усваивания жидкости в кишечнике.

Такой широкий спектр выполняемых функций говорит о том, что не стоит недооценивать значимость микрофлоры в организме. Александр Михайлович в своих трудах подчеркивал особенности строения микрофлоры и считал ее самостоятельным органом. Чтобы усвоение продуктов питания происходило лучше и быстрее, необходимо составлять свой рацион из той пищи, которая полностью отвечает требованиям микрофлоры кишечника. Отличным вариантом станет растительная сырая клетчатка. Если человек будет отдавать предпочтение такой пище, то организм сможет в полной мере защититься от бактерий и микробов, а также активируется потребление витаминов и полезных аминокислот в нужном объеме.


На процесс переваривания разной пищи уходит разное количество времени:

мясо – 8 часов;

овощи – 4 часа;

фрукты – 2 часа;

сложные углеводы – 1 час.

Чтобы переварить разные продукты, смешанные вместе, часто организму приходится выделять сок в желудке с крайне высокой степенью кислотности. В результате этого может начинаться брожение, из-за чего образовываются газы. Такой процесс негативно сказывается на слабощелочном балансе, что в свою очередь подвергает опасности здоровую микрофлору. Когда такое происходит с регулярной периодичностью, у человека развивается хроническая дисфункция. В отдельных случаях это может привести к гниению и разложению внутренних органов.

Считается, что вегетарианство полезно для здоровья внутренних органов. Лучше исключить из рациона продукты животного происхождения, а также искусственно изготовленную пищу. Положительно на организме скажется отказ от сахара, консервированных продуктов, производственной муки и того, что из нее было приготовлено. Однако и в растительной пище порой может быть недостаточно полезных веществ. Чаще всего так происходит из-за продолжительного хранения.


Уголев также сумел доказать, что качество потребляемых продуктов способно влиять на эмоциональное состояние человека. Из чего можно сделать вывод, что чем полезнее питается человек, тем он счастливее. Однако каждый организм индивидуален, поэтому прежде чем переходить на сыроедение и вегетарианство лучше проконсультироваться с профильными врачами.

Тем, кому интересна «Теория адекватного питания», скачать книгу могут здесь по ссылке:

Для наглядности теории приведем несколько видеороликов:

Первое видео о правильном питании для обеспечения качественной жизнедеятельности организма:

Второе видео о сохранении здоровой микрофлоры путем быстрой адаптации термообработанной пищи:

Третье видео о влиянии пищи на гормональный фон людей:

Заключение

«Теория адекватного питания» Уголева помогает под другим углом рассмотреть основы пищеварения, переосмыслить процесс потребления еды, пересмотреть свой привычный рацион. В современном мире развивается тенденция к улучшению качества жизни. Многие стараются правильно питаться, садясь на диеты и покупая дорогостоящие органические продукты. Однако прежде необходимо разобраться в самом процессе пищеварения, понять его основные особенности, чтобы не навредить организму. Александр Михайлович Уголев в своем труде подробно описывает то, как необходимо потреблять пищу, объясняя причины и демонстрируя возможные негативные последствия при несоблюдении главных правил. Всем, кто старается следить за своим здоровьем, рекомендуется ознакомиться с «Теорией адекватного питания».