Čo sa deje v syntetickom období bunkového cyklu. Životný cyklus bunky: fázy, periódy. Životný cyklus vírusu v hostiteľskej bunke. Obdobia a fázy bunkového cyklu

Táto lekcia vám umožňuje samostatne študovať tému „Životný cyklus bunky“. Tu si povieme, čo hrá hlavnú úlohu pri delení buniek, ktoré prenáša genetickú informáciu z jednej generácie na druhú. Budete tiež študovať celý životný cyklus bunky, ktorý sa tiež nazýva sled udalostí, ku ktorým dochádza od okamihu vytvorenia bunky až po jej rozdelenie.

Téma: Rozmnožovanie a individuálny vývoj organizmov

Lekcia: Životný cyklus bunky

1. Bunkový cyklus

Podľa bunkovej teórie nové bunky vznikajú len delením predchádzajúcich materských buniek. Chromozómy, ktoré obsahujú molekuly DNA, hrajú dôležitú úlohu v procesoch bunkového delenia, pretože zabezpečujú prenos genetickej informácie z jednej generácie na druhú.

Preto je veľmi dôležité, aby dcérske bunky dostávali rovnaké množstvo genetického materiálu a je celkom prirodzené, že predtým bunkové delenie dochádza k zdvojeniu genetického materiálu, teda molekuly DNA (obr. 1).

Aký je bunkový cyklus? Životný cyklus bunky- sled dejov prebiehajúcich od okamihu vzniku danej bunky až po jej rozdelenie na dcérske bunky. Podľa inej definície je bunkový cyklus životom bunky od okamihu, keď sa objaví ako výsledok delenia materskej bunky, až po jej vlastné rozdelenie alebo smrť.

Počas bunkového cyklu bunka rastie a mení sa, aby úspešne plnila svoje funkcie v mnohobunkovom organizme. Tento proces sa nazýva diferenciácia. Bunka potom po určitú dobu úspešne plní svoje funkcie, po ktorých sa začne deliť.

Je jasné, že všetky bunky mnohobunkového organizmu sa nemôžu donekonečna deliť, inak by boli všetky stvorenia vrátane človeka nesmrteľné.

Ryža. 1. Fragment molekuly DNA

To sa nestane, pretože v DNA sú „gény smrti“, ktoré sa aktivujú za určitých podmienok. Syntetizujú určité enzýmové proteíny, ktoré ničia bunkové štruktúry a organely. V dôsledku toho sa bunka zmenšuje a odumiera.

Táto programovaná bunková smrť sa nazýva apoptóza. Ale v období od okamihu, keď sa bunka objaví a pred apoptózou, bunka prechádza mnohými deleniami.

2. Štádiá bunkového cyklu

Bunkový cyklus pozostáva z 3 hlavných fáz:

1. Interfáza je obdobie intenzívneho rastu a biosyntézy určitých látok.

2. Mitóza alebo karyokinéza (jadrové delenie).

3. Cytokinéza (delenie cytoplazmy).

Poďme si bližšie charakterizovať štádiá bunkového cyklu. Takže prvý je medzifázový. Interfáza je najdlhšia fáza, obdobie intenzívnej syntézy a rastu. Bunka syntetizuje mnoho látok potrebných pre jej rast a realizáciu všetkých jej vlastných funkcií. Počas interfázy dochádza k replikácii DNA.

Mitóza je proces jadrového delenia, pri ktorom sú chromatidy od seba oddelené a redistribuované ako chromozómy medzi dcérske bunky.

Cytokinéza je proces delenia cytoplazmy medzi dve dcérske bunky. Cytológia zvyčajne pod názvom mitóza spája 2. a 3. štádium, teda delenie buniek (karyokinéza) a delenie cytoplazmy (cytokinéza).

3. Medzifáza

Poďme si bližšie charakterizovať medzifázu (obr. 2). Interfáza pozostáva z 3 periód: G1, S a G2. Prvé obdobie, presyntetické (G1) je fázou intenzívneho rastu buniek.


Ryža. 2. Hlavné fázy životného cyklu bunky.

Tu dochádza k syntéze určitých látok, toto je najdlhšia fáza, ktorá nasleduje po delení buniek. V tejto fáze dochádza k akumulácii látok a energie potrebnej na nasledujúce obdobie, teda na zdvojnásobenie DNA.

Podľa moderných koncepcií sa v období G1 syntetizujú látky, ktoré inhibujú alebo stimulujú ďalšie obdobie bunkového cyklu, a to syntetické obdobie.

Syntetická perióda (S) zvyčajne trvá od 6 do 10 hodín, na rozdiel od predsyntetickej periódy, ktorá môže trvať až niekoľko dní a zahŕňa duplikáciu DNA, ako aj syntézu proteínov, ako sú histónové proteíny, ktoré môžu vytvárať chromozómy. Na konci syntetického obdobia sa každý chromozóm skladá z dvoch chromatidov spojených navzájom centromérou. Počas toho istého obdobia sa centrioly zdvojnásobia.

Postsyntetické obdobie (G2) nastáva bezprostredne po zdvojnásobení chromozómov. Trvá od 2 do 5 hodín.

Počas toho istého obdobia sa hromadí energia potrebná pre ďalší proces bunkového delenia, teda priamo pre mitózu.

V tomto období dochádza k deleniu mitochondrií a chloroplastov a k syntéze proteínov, ktoré následne vytvoria mikrotubuly. Mikrotubuly, ako viete, tvoria vretenové vlákno a bunka je teraz pripravená na mitózu.

4. Proces duplikácie DNA

Predtým, ako prejdeme k opisu metód bunkového delenia, zvážme proces duplikácie DNA, ktorý vedie k vytvoreniu dvoch chromatidov. Tento proces prebieha v syntetickom období. Zdvojenie molekuly DNA sa nazýva replikácia alebo reduplikácia (obr. 3).


Ryža. 3. Proces replikácie DNA (reduplikácie) (syntetická perióda interfázy). Enzým helikáza (zelená) rozvinie dvojitú špirálu DNA a DNA polymerázy (modrá a oranžová) dopĺňajú komplementárne nukleotidy.

Pri replikácii sa časť materskej molekuly DNA rozpletie na dve vlákna pomocou špeciálneho enzýmu – helikázy. Okrem toho sa to dosiahne prerušením vodíkových väzieb medzi komplementárnymi dusíkatými bázami (A-T a G-C). Ďalej, pre každý nukleotid z divergovaných reťazcov DNA, enzým DNA polymeráza upravuje komplementárny nukleotid.

Vzniknú tak dve dvojvláknové molekuly DNA, z ktorých každá obsahuje jedno vlákno rodičovskej molekuly a jedno nové dcérske vlákno. Tieto dve molekuly DNA sú úplne identické.

Na replikáciu nie je možné súčasne rozvinúť celú veľkú molekulu DNA. Preto replikácia začína v oddelených úsekoch molekuly DNA, vytvárajú sa krátke fragmenty, ktoré sú potom pomocou určitých enzýmov zošité do dlhého vlákna.

Trvanie bunkového cyklu závisí od typu bunky a od vonkajších faktorov, ako je teplota, dostupnosť kyslíka a dostupnosť živín. Napríklad bakteriálne bunky sa za priaznivých podmienok delia každých 20 minút, črevné epiteliálne bunky každých 8-10 hodín a bunky špičky koreňov cibule každých 20 hodín. A niektoré bunky nervového systému sa nikdy nerozdelia.

Vznik bunkovej teórie

V 17. storočí anglický lekár Robert Hooke (obr. 4) pomocou podomácky vyrobeného svetelného mikroskopu zistil, že korok a iné rastlinné tkanivá pozostávajú z malých buniek oddelených prepážkami. Nazval ich bunky.

Ryža. 4. Robert Hooke

V roku 1738 prišiel nemecký botanik Matthias Schleiden (obr. 5) k záveru, že rastlinné pletivá pozostávajú z buniek. Presne o rok prišiel zoológ Theodor Schwann (obr. 5) k rovnakému záveru, ale len čo sa týka živočíšnych tkanív.

Ryža. 5. Matthias Schleiden (vľavo) Theodor Schwann (vpravo)

Dospel k záveru, že živočíšne tkanivá sa rovnako ako rastlinné skladajú z buniek a bunky sú základom života. Na základe bunkových údajov vedci sformulovali bunkovú teóriu.

Ryža. 6. Rudolf Virchow

O 20 rokov neskôr Rudolf Virchow (obr. 6) rozšíril bunkovú teóriu a dospel k záveru, že bunky môžu vzniknúť z iných buniek. Napísal: „Tam, kde existuje bunka, musí existovať aj predchádzajúca bunka, tak ako zvieratá pochádzajú len zo zvieraťa a rastliny iba z rastliny... Všetky živé formy, či už živočíšne alebo rastlinné organizmy, alebo ich súčasti, sú ovládaný večným zákonom neustáleho vývoja“.

Štruktúra chromozómov

Ako viete, chromozómy zohrávajú kľúčovú úlohu pri delení buniek, pretože prenášajú genetickú informáciu z jednej generácie na druhú. Chromozómy pozostávajú z molekuly DNA naviazanej na histónové proteíny. Ribozómy tiež obsahujú malé množstvo RNA.

V deliacich sa bunkách sú chromozómy prezentované vo forme dlhých tenkých vlákien, rovnomerne rozmiestnených v celom objeme jadra.

Jednotlivé chromozómy nie sú rozlíšiteľné, ale ich chromozomálny materiál je zafarbený základnými farbivami a nazýva sa chromatín. Pred delením buniek sa chromozómy (obr. 7) zhrubnú a skracujú, čo umožňuje ich zreteľné videnie pod svetelným mikroskopom.

Ryža. 7. Chromozómy v profáze 1 meiózy

V dispergovanom, teda natiahnutom stave, sa chromozómy zúčastňujú všetkých biosyntetických procesov alebo regulujú biosyntetické procesy a pri delení buniek je táto funkcia pozastavená.

Vo všetkých formách bunkového delenia sa DNA každého chromozómu replikuje tak, že sa vytvoria dva identické dvojité polynukleotidové vlákna DNA.

Ryža. 8. Štruktúra chromozómov

Tieto reťazce sú obklopené proteínovým obalom a na začiatku bunkového delenia vyzerajú ako identické vlákna ležiace vedľa seba. Každé vlákno sa nazýva chromatid a je spojené s druhým vláknom oblasťou, ktorá sa nefarbí, nazývanou centroméra (obr. 8).

Domáca úloha

1. Čo je bunkový cyklus? Z akých etáp pozostáva?

2. Čo sa stane s bunkou počas interfázy? Z akých fáz pozostáva medzifáza?

3. Čo je replikácia? Aký je jeho biologický význam? Kedy sa to stane? Aké látky sa na ňom podieľajú?

4. Ako vznikla bunková teória? Vymenujte vedcov, ktorí sa podieľali na jeho vzniku.

5. Čo je to chromozóm? Aká je úloha chromozómov pri delení buniek?

1. Technická a humanitná literatúra.

2. Jednotná zbierka digitálnych vzdelávacích zdrojov.

3. Jednotná zbierka digitálnych vzdelávacích zdrojov.

4. Jednotná zbierka digitálnych vzdelávacích zdrojov.

5. Internetový portál Schooltube.

Bibliografia

1. Kamensky A. A., Kriksunov E. A., Pasechnik V. V. Všeobecná biológia Drop 10-11 ročník, 2005.

2. Biológia. 10. ročník Všeobecná biológia. Základná úroveň / P. V. Iževskij, O. A. Kornilova, T. E. Loshchilina a ďalší - 2. vyd., prepracované. - Ventana-Graf, 2010. - 224 s.

3. Belyaev D.K. Biológia 10-11 ročník. Všeobecná biológia. Základná úroveň. - 11. vyd., stereotyp. - M.: Vzdelávanie, 2012. - 304 s.

4. Biológia 11. ročník. Všeobecná biológia. Úroveň profilu / V. B. Zakharov, S. G. Mamontov, N. I. Sonin a ďalší - 5. vyd., stereotyp. - Drop, 2010. - 388 s.

5. Agafonova I. B., Zakharova E. T., Sivoglazov V. I. Biológia 10-11 ročník. Všeobecná biológia. Základná úroveň. - 6. vyd., dod. - Drop, 2010. - 384 s.

Bunkový cyklus

Bunkový cyklus pozostáva z mitózy (M fáza) a interfázy. V medzifáze sa postupne rozlišujú fázy G 1, S a G 2.

ETAPY BUNKOVÉHO CYKLU

Medzifáza

G 1 nasleduje telofázu mitózy. Počas tejto fázy bunka syntetizuje RNA a proteíny. Trvanie fázy sa pohybuje od niekoľkých hodín do niekoľkých dní.

G 2 bunky môžu opustiť cyklus a sú vo fáze G 0 . Vo fáze G 0 bunky sa začínajú diferencovať.

S. Počas S fázy pokračuje v bunke syntéza proteínov, dochádza k replikácii DNA a oddeľujú sa centrioly. Vo väčšine buniek trvá S fáza 8-12 hodín.

G 2 . Vo fáze G 2 pokračuje syntéza RNA a proteínu (napríklad syntéza tubulínu pre mikrotubuly mitotického vretienka). Dcérske centrioly dosahujú veľkosť definitívnych organel. Táto fáza trvá 2-4 hodiny.

MITÓZA

Počas mitózy sa delí jadro (karyokinéza) a cytoplazma (cytokinéza). Fázy mitózy: profáza, prometafáza, metafáza, anafáza, telofáza.

Profázujte. Každý chromozóm pozostáva z dvoch sesterských chromatíd spojených centromérou, jadierko zmizne. Centrioly organizujú mitotické vreteno. Pár centriolov je súčasťou mitotického centra, z ktorého radiálne vychádzajú mikrotubuly. Najprv sa mitotické centrá nachádzajú v blízkosti jadrovej membrány a potom sa rozchádzajú a vytvorí sa bipolárne mitotické vreteno. Tento proces zahŕňa pólové mikrotubuly, ktoré sa navzájom ovplyvňujú, keď sa predlžujú.

Centriole je súčasťou centrozómu (centrozóm obsahuje dva centrioly a pericentriolovú matricu) a má tvar valca s priemerom 15 nm a dĺžkou 500 nm; stena valca pozostáva z 9 trojíc mikrotubulov. V centrozóme sú centrioly umiestnené navzájom v pravom uhle. Počas S fázy bunkového cyklu sa duplikujú centrioly. Pri mitóze sa páry centriolov, z ktorých každý pozostáva z pôvodného a novovytvoreného, ​​rozchádzajú k pólom buniek a podieľajú sa na tvorbe mitotického vretienka.

Prometafáza. Jadrový obal sa rozpadá na malé úlomky. V oblasti centromér sa objavujú kinetochory, ktoré fungujú ako centrá pre organizáciu kinetochorových mikrotubulov. Odchod kinetochórov z každého chromozómu v oboch smeroch a ich interakcia s pólovými mikrotubulmi mitotického vretienka je dôvodom pohybu chromozómov.

Metafáza. Chromozómy sa nachádzajú v rovníkovej oblasti vretena. Vytvorí sa metafázová platnička, v ktorej je každý chromozóm držaný párom kinetochorov a pridružených kinetochorových mikrotubulov nasmerovaných k opačným pólom mitotického vretienka.

Anaphase– divergencia dcérskych chromozómov k pólom mitotického vretienka rýchlosťou 1 µm/min.

Telofáza. Chromatidy sa približujú k pólom, kinetochorové mikrotubuly miznú a pólové sa ďalej predlžujú. Vytvorí sa jadrový obal a objaví sa jadierko.

Cytokinéza– rozdelenie cytoplazmy na dve samostatné časti. Proces začína v neskorej anafáze alebo telofáze. Plazmalema je stiahnutá medzi dve dcérske jadrá v rovine kolmej na dlhú os vretena. Štiepna ryha sa prehlbuje a medzi dcérskymi bunkami zostáva most - zvyškové teliesko. Ďalšia deštrukcia tejto štruktúry vedie k úplnému oddeleniu dcérskych buniek.

Regulátory bunkového delenia

Bunková proliferácia, ku ktorej dochádza prostredníctvom mitózy, je prísne regulovaná rôznymi molekulárnymi signálmi. Koordinovaná aktivita týchto viacerých regulátorov bunkového cyklu zaisťuje ako prechod buniek z fázy do fázy bunkového cyklu, tak aj presné vykonávanie udalostí každej fázy. Hlavným dôvodom výskytu proliferačne nekontrolovaných buniek sú mutácie v génoch kódujúcich štruktúru regulátorov bunkového cyklu. Regulátory bunkového cyklu a mitózy sa delia na intracelulárne a intercelulárne. Intracelulárne molekulárne signály sú početné, z nich treba spomenúť predovšetkým samotné regulátory bunkového cyklu (cyklíny, cyklín-dependentné proteínkinázy, ich aktivátory a inhibítory) a nádorové supresory.

MEIOZA

Počas meiózy sa tvoria haploidné gaméty.

Prvé meiotické delenie

Prvým delením meiózy (profáza I, metafáza I, anafáza I a telofáza I) je redukcia.

Profázujteja prechádza postupne niekoľkými štádiami (leptotén, zygotén, pachytén, diplotén, diakinéza).

Leptotén - chromatín kondenzuje, každý chromozóm pozostáva z dvoch chromatíd spojených centromérou.

zygotén– homológne párové chromozómy sa priblížia a dostanú sa do fyzického kontaktu ( synapsie) vo forme synaptonemálneho komplexu, ktorý zabezpečuje konjugáciu chromozómov. V tomto štádiu dva susedné páry chromozómov tvoria bivalent.

Pachytena– chromozómy hrubnú v dôsledku spiralizácie. Samostatné úseky konjugovaných chromozómov sa navzájom pretínajú a vytvárajú chiazmata. Deje sa tu prejsť- výmena úsekov medzi otcovskými a materskými homologickými chromozómami.

Diplotena– oddelenie konjugovaných chromozómov v každom páre v dôsledku pozdĺžneho štiepenia synaptonemálneho komplexu. Chromozómy sú rozdelené po celej dĺžke komplexu, s výnimkou chiazmat. V bivalente sú jasne rozlíšiteľné 4 chromatidy. Takýto bivalent sa nazýva tetráda. Miesta odvíjania sa objavujú v chromatidoch, kde sa syntetizuje RNA.

Diakinéza. Procesy skracovania chromozómov a štiepenia chromozómových párov pokračujú. Chiasmata sa presúvajú na konce chromozómov (terminalizácia). Jadrová membrána je zničená a jadierko zmizne. Objaví sa mitotické vreteno.

Metafázaja. V metafáze I tvoria tetrady metafázovú platňu. Vo všeobecnosti sú otcovské a materské chromozómy náhodne rozdelené na jednej alebo druhej strane rovníka mitotického vretienka. Tento vzorec distribúcie chromozómov je základom druhého Mendelovho zákona, ktorý (spolu s krížením) zabezpečuje genetické rozdiely medzi jednotlivcami.

Anaphaseja sa líši od anafázy mitózy tým, že počas mitózy sa sesterské chromatidy pohybujú smerom k pólom. Počas tejto fázy meiózy sa neporušené chromozómy presúvajú k pólom.

Telofázaja sa nelíši od telofázy mitózy. Vznikajú jadrá s 23 konjugovanými (zdvojenými) chromozómami, dochádza k cytokinéze a tvoria sa dcérske bunky.

Druhé rozdelenie meiózy.

Druhé delenie meiózy - rovnicové - prebieha rovnako ako mitóza (profáza II, metafáza II, anafáza II a telofáza), ale oveľa rýchlejšie. Dcérske bunky dostávajú haploidnú sadu chromozómov (22 autozómov a jeden pohlavný chromozóm).

Táto lekcia vám umožňuje samostatne študovať tému „Životný cyklus bunky“. Tu si povieme, čo hrá hlavnú úlohu pri delení buniek, ktoré prenáša genetickú informáciu z jednej generácie na druhú. Budete tiež študovať celý životný cyklus bunky, ktorý sa tiež nazýva sled udalostí, ku ktorým dochádza od okamihu vytvorenia bunky až po jej rozdelenie.

Téma: Rozmnožovanie a individuálny vývoj organizmov

Lekcia: Životný cyklus bunky

Podľa bunkovej teórie nové bunky vznikajú len delením predchádzajúcich materských buniek. , ktoré obsahujú molekuly DNA, hrajú dôležitú úlohu v procesoch bunkového delenia, keďže zabezpečujú prenos genetickej informácie z jednej generácie na druhú.

Preto je veľmi dôležité, aby dcérske bunky dostávali rovnaké množstvo genetického materiálu a je celkom prirodzené, že predtým bunkové delenie dochádza k zdvojeniu genetického materiálu, teda molekuly DNA (obr. 1).

Aký je bunkový cyklus? Životný cyklus bunky- sled dejov prebiehajúcich od okamihu vzniku danej bunky až po jej rozdelenie na dcérske bunky. Podľa inej definície je bunkový cyklus životom bunky od okamihu, keď sa objaví ako výsledok delenia materskej bunky, až po jej vlastné rozdelenie alebo smrť.

Počas bunkového cyklu bunka rastie a mení sa, aby úspešne plnila svoje funkcie v mnohobunkovom organizme. Tento proces sa nazýva diferenciácia. Bunka potom po určitú dobu úspešne plní svoje funkcie, po ktorých sa začne deliť.

Je jasné, že všetky bunky mnohobunkového organizmu sa nemôžu donekonečna deliť, inak by boli všetky stvorenia vrátane človeka nesmrteľné.

Ryža. 1. Fragment molekuly DNA

To sa nestane, pretože v DNA sú „gény smrti“, ktoré sa aktivujú za určitých podmienok. Syntetizujú určité enzýmové proteíny, ktoré ničia bunkové štruktúry a organely. V dôsledku toho sa bunka zmenšuje a odumiera.

Táto programovaná bunková smrť sa nazýva apoptóza. Ale v období od okamihu, keď sa bunka objaví a pred apoptózou, bunka prechádza mnohými deleniami.

Bunkový cyklus pozostáva z 3 hlavných fáz:

1. Interfáza je obdobie intenzívneho rastu a biosyntézy určitých látok.

2. Mitóza alebo karyokinéza (jadrové delenie).

3. Cytokinéza (delenie cytoplazmy).

Poďme si bližšie charakterizovať štádiá bunkového cyklu. Takže prvý je medzifázový. Interfáza je najdlhšia fáza, obdobie intenzívnej syntézy a rastu. Bunka syntetizuje mnoho látok potrebných pre jej rast a realizáciu všetkých jej vlastných funkcií. Počas interfázy dochádza k replikácii DNA.

Mitóza je proces jadrového delenia, pri ktorom sú chromatidy od seba oddelené a redistribuované ako chromozómy medzi dcérske bunky.

Cytokinéza je proces delenia cytoplazmy medzi dve dcérske bunky. Cytológia zvyčajne pod názvom mitóza spája 2. a 3. štádium, teda delenie buniek (karyokinéza) a delenie cytoplazmy (cytokinéza).

Poďme si bližšie charakterizovať medzifázu (obr. 2). Interfáza pozostáva z 3 periód: G 1, S a G 2. Prvá perióda, presyntetická (G 1) je fázou intenzívneho rastu buniek.

Ryža. 2. Hlavné fázy životného cyklu bunky.

Tu dochádza k syntéze určitých látok, toto je najdlhšia fáza, ktorá nasleduje po delení buniek. V tejto fáze dochádza k akumulácii látok a energie potrebnej na nasledujúce obdobie, teda na zdvojnásobenie DNA.

Podľa moderných koncepcií sa v období G 1 syntetizujú látky, ktoré inhibujú alebo stimulujú ďalšie obdobie bunkového cyklu, a to syntetické obdobie.

Syntetická perióda (S) zvyčajne trvá od 6 do 10 hodín, na rozdiel od predsyntetickej periódy, ktorá môže trvať až niekoľko dní a zahŕňa duplikáciu DNA, ako aj syntézu proteínov, ako sú histónové proteíny, ktoré môžu vytvárať chromozómy. Na konci syntetického obdobia sa každý chromozóm skladá z dvoch chromatidov spojených navzájom centromérou. Počas toho istého obdobia sa centrioly zdvojnásobia.

Postsyntetické obdobie (G 2) nastáva bezprostredne po zdvojnásobení chromozómov. Trvá od 2 do 5 hodín.

Počas toho istého obdobia sa hromadí energia potrebná pre ďalší proces bunkového delenia, teda priamo pre mitózu.

V tomto období dochádza k deleniu mitochondrií a chloroplastov a k syntéze proteínov, ktoré následne vytvoria mikrotubuly. Mikrotubuly, ako viete, tvoria vretenové vlákno a bunka je teraz pripravená na mitózu.

Predtým, ako prejdeme k opisu metód bunkového delenia, zvážme proces duplikácie DNA, ktorý vedie k vytvoreniu dvoch chromatidov. Tento proces prebieha v syntetickom období. Zdvojenie molekuly DNA sa nazýva replikácia alebo reduplikácia (obr. 3).

Ryža. 3. Proces replikácie DNA (reduplikácie) (syntetická perióda interfázy). Enzým helikáza (zelená) rozvinie dvojitú špirálu DNA a DNA polymerázy (modrá a oranžová) dopĺňajú komplementárne nukleotidy.

Pri replikácii sa časť materskej molekuly DNA rozpletie na dve vlákna pomocou špeciálneho enzýmu – helikázy. Okrem toho sa to dosiahne prerušením vodíkových väzieb medzi komplementárnymi dusíkatými bázami (A-T a G-C). Ďalej, pre každý nukleotid z divergovaných reťazcov DNA, enzým DNA polymeráza upravuje komplementárny nukleotid.

Vzniknú tak dve dvojvláknové molekuly DNA, z ktorých každá obsahuje jedno vlákno rodičovskej molekuly a jedno nové dcérske vlákno. Tieto dve molekuly DNA sú úplne identické.

Na replikáciu nie je možné súčasne rozvinúť celú veľkú molekulu DNA. Preto replikácia začína v oddelených úsekoch molekuly DNA, vytvárajú sa krátke fragmenty, ktoré sú potom pomocou určitých enzýmov zošité do dlhého vlákna.

Trvanie bunkového cyklu závisí od typu bunky a od vonkajších faktorov, ako je teplota, dostupnosť kyslíka a dostupnosť živín. Napríklad bakteriálne bunky sa za priaznivých podmienok delia každých 20 minút, črevné epiteliálne bunky každých 8-10 hodín a bunky špičky koreňov cibule každých 20 hodín. A niektoré bunky nervového systému sa nikdy nerozdelia.

Vznik bunkovej teórie

V 17. storočí anglický lekár Robert Hooke (obr. 4) pomocou podomácky vyrobeného svetelného mikroskopu zistil, že korok a iné rastlinné tkanivá pozostávajú z malých buniek oddelených prepážkami. Nazval ich bunky.

Ryža. 4. Robert Hooke

V roku 1738 prišiel nemecký botanik Matthias Schleiden (obr. 5) k záveru, že rastlinné pletivá pozostávajú z buniek. Presne o rok prišiel zoológ Theodor Schwann (obr. 5) k rovnakému záveru, ale len čo sa týka živočíšnych tkanív.

Ryža. 5. Matthias Schleiden (vľavo) Theodor Schwann (vpravo)

Dospel k záveru, že živočíšne tkanivá sa rovnako ako rastlinné skladajú z buniek a bunky sú základom života. Na základe bunkových údajov vedci sformulovali bunkovú teóriu.

Ryža. 6. Rudolf Virchow

O 20 rokov neskôr Rudolf Virchow (obr. 6) rozšíril bunkovú teóriu a dospel k záveru, že bunky môžu vzniknúť z iných buniek. Napísal: „Tam, kde existuje bunka, musí existovať aj predchádzajúca bunka, tak ako zvieratá pochádzajú len zo zvieraťa a rastliny iba z rastliny... Všetky živé formy, či už živočíšne alebo rastlinné organizmy, alebo ich súčasti, sú ovládaný večným zákonom neustáleho vývoja“.

Štruktúra chromozómov

Ako viete, chromozómy zohrávajú kľúčovú úlohu pri delení buniek, pretože prenášajú genetickú informáciu z jednej generácie na druhú. Chromozómy pozostávajú z molekuly DNA naviazanej na histónové proteíny. Ribozómy tiež obsahujú malé množstvo RNA.

V deliacich sa bunkách sú chromozómy prezentované vo forme dlhých tenkých vlákien, rovnomerne rozmiestnených v celom objeme jadra.

Jednotlivé chromozómy nie sú rozlíšiteľné, ale ich chromozomálny materiál je zafarbený základnými farbivami a nazýva sa chromatín. Pred delením buniek sa chromozómy (obr. 7) zhrubnú a skracujú, čo umožňuje ich zreteľné videnie pod svetelným mikroskopom.

Ryža. 7. Chromozómy v profáze 1 meiózy

V dispergovanom, teda natiahnutom stave, sa chromozómy zúčastňujú všetkých biosyntetických procesov alebo regulujú biosyntetické procesy a pri delení buniek je táto funkcia pozastavená.

Vo všetkých formách bunkového delenia sa DNA každého chromozómu replikuje tak, že sa vytvoria dva identické dvojité polynukleotidové vlákna DNA.

Ryža. 8. Štruktúra chromozómov

Tieto reťazce sú obklopené proteínovým obalom a na začiatku bunkového delenia vyzerajú ako identické vlákna ležiace vedľa seba. Každé vlákno sa nazýva chromatid a je spojené s druhým vláknom oblasťou, ktorá sa nefarbí, nazývanou centroméra (obr. 8).

Domáca úloha

1. Čo je bunkový cyklus? Z akých etáp pozostáva?

2. Čo sa stane s bunkou počas interfázy? Z akých fáz pozostáva medzifáza?

3. Čo je replikácia? Aký je jeho biologický význam? Kedy sa to stane? Aké látky sa na ňom podieľajú?

4. Ako vznikla bunková teória? Vymenujte vedcov, ktorí sa podieľali na jeho vzniku.

5. Čo je to chromozóm? Aká je úloha chromozómov pri delení buniek?

1. Technická a humanitná literatúra ().

2. Jednotná zbierka digitálnych vzdelávacích zdrojov ().

3. Jednotná zbierka digitálnych vzdelávacích zdrojov ().

4. Jednotná zbierka digitálnych vzdelávacích zdrojov ().

Bibliografia

1. Kamensky A. A., Kriksunov E. A., Pasechnik V. V. Všeobecná biológia Drop 10-11 ročník, 2005.

2. Biológia. 10. ročník Všeobecná biológia. Základná úroveň / P. V. Iževskij, O. A. Kornilova, T. E. Loshchilina a ďalší - 2. vyd., prepracované. - Ventana-Graf, 2010. - 224 s.

3. Belyaev D.K. Biológia 10-11 ročník. Všeobecná biológia. Základná úroveň. - 11. vyd., stereotyp. - M.: Vzdelávanie, 2012. - 304 s.

4. Biológia 11. ročník. Všeobecná biológia. Úroveň profilu / V. B. Zakharov, S. G. Mamontov, N. I. Sonin a ďalší - 5. vyd., stereotyp. - Drop, 2010. - 388 s.

5. Agafonova I. B., Zakharova E. T., Sivoglazov V. I. Biológia 10-11 ročník. Všeobecná biológia. Základná úroveň. - 6. vyd., dod. - Drop, 2010. - 384 s.

Výška ľudského tela je spôsobená zväčšením veľkosti a počtu buniek, pričom to druhé je zabezpečené procesom delenia alebo mitózy. Bunková proliferácia nastáva pod vplyvom extracelulárnych rastových faktorov a samotné bunky podliehajú opakujúcej sa sekvencii udalostí známych ako bunkový cyklus.

Existujú štyri hlavné fázy: G1 (presyntetický), S (syntetický), G2 (postsyntetický) a M (mitotický). Potom nasleduje oddelenie cytoplazmy a plazmatickej membrány, výsledkom čoho sú dve identické dcérske bunky. Fázy Gl, S a G2 sú súčasťou medzifázy. K replikácii chromozómov dochádza počas syntetickej fázy alebo S fázy.
Väčšina bunky nepodliehajú aktívnemu deleniu ich mitotická aktivita je potlačená počas fázy GO, ktorá je súčasťou fázy G1.

Trvanie M-fázy je 30-60 minút, pričom celý bunkový cyklus prebieha približne za 20 hodín V závislosti od veku prechádzajú normálne (nenádorové) ľudské bunky až 80 mitotickými cyklami.

Procesy bunkový cyklus sú kontrolované sekvenčne opakovanou aktiváciou a inaktiváciou kľúčových enzýmov nazývaných cyklín-dependentné proteínkinázy (CDPK), ako aj ich kofaktorov, cyklínov. V tomto prípade dochádza pod vplyvom fosfokináz a fosfatáz k fosforylácii a defosforylácii špeciálnych komplexov cyklín-CZK, ktoré sú zodpovedné za nástup určitých fáz cyklu.

Okrem toho na relevantnom etapy podobné bielkovinám CZK spôsobujú zhutnenie chromozómov, prasknutie jadrového obalu a reorganizáciu cytoskeletálnych mikrotubulov za účelom vytvorenia mitotického vretienka.

G1 fáza bunkového cyklu

Fáza G1- medzistupeň medzi M a S fázou, počas ktorého sa zvyšuje množstvo cytoplazmy. Okrem toho je na konci fázy G1 prvý kontrolný bod, kde sa kontroluje oprava DNA a podmienky prostredia (či sú dostatočne priaznivé na prechod do fázy S).

V prípade jadrovej DNA poškodená, zvyšuje sa aktivita proteínu p53, ktorý stimuluje transkripciu p21. Ten sa viaže na špecifický komplex cyklín-CZK, zodpovedný za prenos bunky do S-fázy, a inhibuje jej delenie v štádiu Gl-fázy. To umožňuje opravným enzýmom opraviť poškodené fragmenty DNA.

Ak sa vyskytnú patológie replikácia proteínu p53 defektnej DNA pokračuje, čo umožňuje deliacim sa bunkám hromadiť mutácie a prispieva k rozvoju nádorových procesov. To je dôvod, prečo sa proteín p53 často nazýva „strážcom genómu“.

G0 fáza bunkového cyklu

Bunková proliferácia u cicavcov je možná len za účasti buniek vylučovaných inými bunkami. extracelulárne rastové faktory, ktoré uplatňujú svoj účinok prostredníctvom kaskádovej signálnej transdukcie protoonkogénov. Ak bunka počas fázy G1 nedostáva vhodné signály, potom opustí bunkový cyklus a dostane sa do stavu G0, v ktorom môže zostať niekoľko rokov.

Blok G0 sa vyskytuje pomocou proteínov - supresorov mitózy, z ktorých jeden je proteín retinoblastómu(Rb proteín) kódovaný normálnymi alelami génu retinoblastómu. Tento proteín sa viaže na šikmé regulačné proteíny, čím blokuje stimuláciu transkripcie génov nevyhnutných pre bunkovú proliferáciu.

Extracelulárne rastové faktory aktiváciou blok zničia Gl-špecifické komplexy cyklín-CZK, ktoré fosforylujú Rb proteín a menia jeho konformáciu, v dôsledku čoho dochádza k prerušeniu spojenia s regulačnými proteínmi. Tie zároveň aktivujú transkripciu génov, ktoré kódujú a ktoré spúšťajú proces proliferácie.

S fáza bunkového cyklu

Štandardné množstvo dvojité skrutkovice DNA v každej bunke je zodpovedajúci diploidný súbor jednovláknových chromozómov zvyčajne označený ako 2C. Sada 2C sa udržiava počas fázy G1 a zdvojnásobuje sa (4C) počas fázy S, keď sa syntetizuje nová chromozomálna DNA.

Počnúc od konca S-fáza a až do fázy M (vrátane fázy G2), každý viditeľný chromozóm obsahuje dve pevne viazané molekuly DNA nazývané sesterské chromatidy. V ľudských bunkách je teda od konca S-fázy do stredu M-fázy 23 párov chromozómov (46 viditeľných jednotiek), ale 4C (92) dvojitých helixov jadrovej DNA.

Prebieha mitóza identické sady chromozómov sú rozdelené medzi dve dcérske bunky tak, že každá z nich obsahuje 23 párov molekúl 2C DNA. Treba poznamenať, že fázy G1 a G0 sú jediné fázy bunkového cyklu, počas ktorých 46 chromozómov v bunkách zodpovedá 2C sade molekúl DNA.

G2 fáza bunkového cyklu

Po druhé kontrolný bod, kde sa testuje veľkosť buniek, je na konci fázy G2, nachádza sa medzi S fázou a mitózou. Okrem toho sa v tomto štádiu pred prechodom na mitózu kontroluje úplnosť replikácie a integrita DNA. Mitóza (M-fáza)

1. Profázujte. Chromozómy, z ktorých každý pozostáva z dvoch identických chromatidov, začnú kondenzovať a stanú sa viditeľnými vo vnútri jadra. Na opačných póloch bunky sa okolo dvoch centrozómov z tubulínových vlákien začína vytvárať vretenovitý aparát.

2. Prometafáza. Jadrová membrána sa delí. Kinetochory sa tvoria okolo centromér chromozómov. Tubulínové vlákna prenikajú do jadra a sústreďujú sa v blízkosti kinetochór, spájajúc ich s vláknami vychádzajúcimi z centrozómov.

3. Metafáza. Napätie vlákien spôsobuje, že sa chromozómy zoradia uprostred medzi pólmi vretena, čím sa vytvorí metafázová platňa.

4. Anaphase. Centromérna DNA, zdieľaná medzi sesterskými chromatidami, je duplikovaná a chromatidy sa oddeľujú a pohybujú od seba bližšie k pólom.

5. Telofáza. Oddelené sesterské chromatidy (ktoré sa od tohto bodu považujú za chromozómy) dosahujú póly. Okolo každej skupiny sa objaví jadrová membrána. Zhutnený chromatín sa rozptýli a tvoria sa jadierka.

6. Cytokinéza. Bunková membrána sa stiahne a v strede medzi pólmi sa vytvorí štiepna ryha, ktorá po čase oddelí obe dcérske bunky.

Centrozómový cyklus

In Čas fázy G1 pár centriolov spojených s každým centrozómom sa oddeľuje. Počas fázy S a G2 sa napravo od starých centriol vytvorí nový dcérsky centriol. Na začiatku M fázy sa centrozóm delí a dva dcérske centrozómy sa pohybujú smerom k bunkovým pólom.

Biologický význam delenia buniek. Nové bunky vznikajú delením existujúcich. Ak sa jednobunkový organizmus rozdelí, vytvoria sa z neho dva nové. Mnohobunkový organizmus tiež začína svoj vývoj najčastejšie jedinou bunkou. Opakovaným delením vzniká obrovské množstvo buniek, ktoré tvoria telo. Bunkové delenie zabezpečuje rozmnožovanie a vývoj organizmov, a teda aj kontinuitu života na Zemi.

Bunkový cyklus- život bunky od okamihu jej vzniku pri delení materskej bunky až po jej vlastné delenie (vrátane tohto delenia) alebo smrť.

Počas tohto cyklu každá bunka rastie a vyvíja sa tak, aby úspešne plnila svoje funkcie v tele. Ďalej bunka funguje určitý čas, po ktorom sa buď delí a vytvára dcérske bunky, alebo zaniká.

V rôznych typoch organizmov trvá bunkový cyklus rôzne časy: napríklad v baktérie trvá to asi 20 minút, ciliates papuče- od 10 do 20 hodín Bunky mnohobunkových organizmov sa v počiatočných štádiách vývoja často delia a potom sa bunkové cykly výrazne predlžujú. Napríklad ihneď po narodení človeka sa mozgové bunky rozdelia mnohokrát: počas tohto obdobia sa vytvorí 80% mozgových neurónov. Väčšina týchto buniek však rýchlo stráca schopnosť deliť sa a niektoré prežívajú až do prirodzenej smrti tela bez delenia.

Bunkový cyklus pozostáva z interfázy a mitózy (obr. 54).

Medzifáza- interval bunkového cyklu medzi dvoma deleniami. Počas celej interfázy sú chromozómy nespiralizované, nachádzajú sa v bunkovom jadre vo forme chromatínu. Interfáza pozostáva spravidla z troch období: predsyntetického, syntetického a postsyntetického.

Predsyntetické obdobie (G,)- najdlhšia časť medzifázy. Môže trvať v rôznych typoch buniek od 2-3 hodín až po niekoľko dní. V tomto období bunka rastie, zvyšuje sa počet organel, akumuluje sa energia a látky na následné zdvojnásobenie DNA V období Gj sa každý chromozóm skladá z jednej chromatidy, teda počtu chromozómov (. P) a chromatidy (s) zápasy. Sada chromozómov a chro-

matid (molekuly DNA) diploidnej bunky v G r perióde bunkového cyklu možno vyjadriť zápisom 2p2s.

V syntetickom období (S) Dochádza k duplikácii DNA, ako aj k syntéze proteínov nevyhnutných pre následnú tvorbu chromozómov. IN Počas toho istého obdobia dochádza k zdvojnásobeniu centriolov.

Duplikácia DNA je tzv replikácie. Počas replikácie špeciálne enzýmy oddeľujú dve vlákna pôvodnej rodičovskej molekuly DNA, čím prerušujú vodíkové väzby medzi komplementárnymi nukleotidmi. Na oddelené vlákna sa viažu molekuly DNA polymerázy, hlavného replikačného enzýmu. Potom sa molekuly DNA polymerázy začnú pohybovať pozdĺž materských reťazcov, používajú ich ako templáty a syntetizujú nové dcérske reťazce, pričom pre ne vyberajú nukleotidy podľa princípu komplementarity (obr. 55). Napríklad, ak má časť materského reťazca DNA nukleotidovú sekvenciu A C G T G A, potom časť dcérskeho reťazca bude mať tvar TGCACT. IN V súvislosti s tým sa replikácia označuje ako reakcie syntézy matrice. IN V dôsledku replikácie sa vytvoria dve identické molekuly dvojvláknovej DNA - IN každý z nich obsahuje jeden reťazec pôvodnej materskej molekuly a jeden novosyntetizovaný dcérsky reťazec.

Na konci S-periódy už každý chromozóm pozostáva z dvoch identických sesterských chromatid, ktoré sú navzájom spojené centromérou. Počet chromatidov v každom páre homológnych chromozómov bude štyri. Súbor chromozómov a chromatidov diploidnej bunky na konci S-periódy (t.j. po replikácii) je teda vyjadrený vstupom 2p4s.

Postsyntetické obdobie (G 2) nastáva po zdvojení DNA – V tomto čase bunka akumuluje energiu a syntetizuje proteíny pre nadchádzajúce delenie (napríklad proteín tubulín na stavbu mikrotubulov, ktoré následne tvoria deliace vretienko). Počas celej periódy C 2 zostáva sada chromozómov a chromatidov v bunke nezmenená – 2n4c.

Medzifáza končí a začína divízia, v dôsledku čoho vznikajú dcérske bunky. Počas mitózy (hlavný spôsob delenia eukaryotických buniek) sa sesterské chromatidy každého chromozómu od seba oddelia a skončia v rôznych dcérskych bunkách. V dôsledku toho majú mladé dcérske bunky vstupujúce do nového bunkového cyklu súbor 2p2s.

Bunkový cyklus teda pokrýva časové obdobie od vzniku bunky po jej úplné rozdelenie na dve dcérske bunky a zahŕňa interfázu (obdobia G r, S-, C 2) a mitózu (pozri obr. 54). Táto sekvencia periód bunkového cyklu je charakteristická pre neustále sa deliace bunky, napríklad pre bunky zárodočnej vrstvy epidermis kože, červenej kostnej drene, sliznice gastrointestinálneho traktu zvierat a buniek vzdelávacieho systému. pletivo rastlín. Sú schopní rozdeliť každých 12-36 hodín.

Naproti tomu väčšina buniek mnohobunkového organizmu sa uberá cestou špecializácie a po prejdení časti periódy Gj sa môže presunúť do tzv. doba odpočinku (Go-period). Bunky v období G n vykonávajú svoje špecifické funkcie v tele, prebiehajú v nich metabolické a energetické procesy, ale príprava na replikáciu sa nevyskytuje. Takéto bunky spravidla natrvalo strácajú schopnosť deliť sa. Príklady zahŕňajú neuróny, bunky v šošovke oka a mnohé ďalšie.

Niektoré bunky, ktoré sú v období Gn (napríklad leukocyty, pečeňové bunky), ho však môžu opustiť a pokračovať v bunkovom cykle, pričom prechádzajú všetkými obdobiami interfázy a mitózy. Pečeňové bunky tak môžu po niekoľkých mesiacoch pokoja opäť získať schopnosť deliť sa.

Bunková smrť. Smrť (smrť) jednotlivých buniek alebo ich skupín neustále nastáva u mnohobunkových organizmov, ako aj odumieranie jednobunkových organizmov. Bunkovú smrť možno rozdeliť do dvoch kategórií: nekróza (z gréčtiny. nekros- mŕtvy) a ap-ptóza, ktorá sa často nazýva programovaná bunková smrť alebo dokonca bunková samovražda.

Nekróza- odumieranie buniek a tkanív v živom organizme spôsobené pôsobením poškodzujúcich faktorov. Nekróza môže byť spôsobená vystavením vysokým a nízkym teplotám, ionizujúcemu žiareniu a rôznym chemikáliám (vrátane toxínov uvoľňovaných patogénmi). Nekrotická bunková smrť sa tiež pozoruje v dôsledku mechanického poškodenia, narušenia zásobovania krvou a inervácie tkanív a alergických reakcií.

V poškodených bunkách sa naruší priepustnosť membrán, zastaví sa syntéza bielkovín, zastavia sa ďalšie metabolické procesy, zničí sa jadro, organely a nakoniec aj celá bunka. Znakom nekrózy je, že celé skupiny buniek podliehajú takejto smrti (napríklad počas infarktu myokardu v dôsledku zastavenia dodávky kyslíka odumiera časť srdcového svalu obsahujúca veľa buniek). Typicky sú umierajúce bunky napadnuté leukocytmi a v oblasti nekrózy sa vyvíja zápalová reakcia.

Apoptóza- programovaná bunková smrť, regulovaná telom. Počas vývoja a fungovania tela niektoré jeho bunky odumierajú bez priameho poškodenia. Tento proces prebieha vo všetkých štádiách života organizmu, dokonca aj počas embryonálneho obdobia.

V dospelom tele tiež neustále dochádza k plánovanej bunkovej smrti. Po ovulácii odumierajú niektoré folikulárne bunky vaječníka a po laktácii odumierajú bunky mliečnych žliaz. V dospelom ľudskom tele zomrie každý deň 50 až 70 miliárd buniek v dôsledku apoptózy. Počas apoptózy sa bunka rozpadne na samostatné fragmenty obklopené plazmalemou. Typicky sú fragmenty mŕtvych buniek absorbované bielymi krvinkami alebo susednými bunkami bez spustenia zápalovej reakcie. Dopĺňanie stratených buniek je zabezpečené delením.

Zdá sa teda, že apoptóza prerušuje nekonečnosť bunkových delení. Od svojho „narodenia“ po apoptózu prechádzajú bunky určitým počtom normálnych bunkových cyklov. Po každom z nich bunka postupuje buď do nového bunkového cyklu alebo do apoptózy.

1. Čo je bunkový cyklus?

2. Čo sa nazýva interfáza? Aké hlavné udalosti sa vyskytujú v medzifázových periódach G r, S- a 0 2?

3. Ktoré bunky sa vyznačujú G 0 -nepnofl? Čo sa deje počas tohto obdobia?

4. Ako prebieha replikácia DNA?

5. Sú molekuly DNA, ktoré tvoria homológne chromozómy, rovnaké? V zložení sesterských chromatidov? prečo?

6. Čo je to nekróza? Apoptóza? Aké sú podobnosti a rozdiely medzi nekrózou a apoptózou?

7. Aký význam má programovaná bunková smrť v živote mnohobunkových organizmov?

8. Prečo si myslíte, že v prevažnej väčšine živých organizmov je hlavným strážcom dedičnej informácie DNA a RNA plní len pomocné funkcie?

    Kapitola 1. Chemické zložky živých organizmov

  • § 1. Obsah chemických prvkov v tele. Makro- a mikroprvky
  • § 2. Chemické zlúčeniny v živých organizmoch. Anorganické látky
  • Kapitola 2. Bunka - stavebná a funkčná jednotka živých organizmov

  • § 10. História objavenia bunky. Tvorba bunkovej teórie
  • § 15. Endoplazmatické retikulum. Golgiho komplex. lyzozómy
  • Kapitola 3. Metabolizmus a premena energie v tele

  • § 24. Všeobecná charakteristika látkovej premeny a premeny energie
  • Kapitola 4. Štrukturálna organizácia a regulácia funkcií v živých organizmoch