Строение лёгких. Газообмен в лёгких и тканях. Легкие – как они работают? Биологическое значение газообмена в легких

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Легкие являются наиболее объемным органом нашего организма. Структура и механизм работы легких достаточно интересны. Каждый вдох наполняет наш организм кислородом, выдох устраняет из организма углекислый газ и некоторые токсические вещества. Дышим мы постоянно – и во сне и во время бодрствования. Процесс вдоха и выдоха – это достаточно сложные действия, которые осуществляются несколькими системами и органами при одновременном взаимодействии.

Несколько удивительных фактов о легких

Знаете ли Вы, что в легких содержится 700 миллионов альвеол (мешотчатых окончаний в которых происходит газообмен )?
Интересен тот факт, что площадь внутренней поверхности альвеол изменяется более чем в 3 раза - при вдохе более 120 квадратных метров, против 40 метров квадратных при выдохе.
Площадь альвеол более чем в 50 раз превышает площадь кожных покровов.

Анатомия легкого

Условно легкое можно разделить на 3 отдела:
1. Воздухоносный отдел (бронхиальное дерево ) – по которому воздух, как по системе каналов достигает альвеол.
2. Отдел, в котором происходит газообмен – система альвеол.
3. Отдельного внимания заслуживает кровеносная система легкого.

Для боле подробного изучения строения легкого рассмотрим каждую из представленных систем отдельно.

Бронхиальное дерево – как воздухоносная система

Представлено ветвлениями бронхов, визуально напоминающих гофрированные трубки. По мере ветвления бронхиального дерева просвет бронхов сужается, но они становятся все более многочисленными. Конечные веточки бронхов, называемые бронхиолами, имеют просвет размером менее 1 миллиметра, но их численность составляет несколько тысяч.

Строение стенки бронхов

Стенка бронхов состоит из 3-х слоев:
1. Внутренний слой слизистый . Выстлан цилиндрическим мерцательным эпителием. Особенностью данного слизистого слоя является наличие на поверхности мерцательных щетинок, которые создают однонаправленное движение слизи на поверхности, способствуют механическому выведению пылинок или иных микроскопических частиц во внешнюю среду. Поверхность слизистой всегда увлажнена, содержит антитела и иммунные клетки.

2. Средняя оболочка мышечно-хрящевая . Данная оболочка выполняет роль механического каркаса. Хрящевые колечки создают вид гофрированного шланга. Хрящевая ткань бронхов препятствует спаданию просвета бронхов при перепадах давления воздуха в легких. Так же хрящевые колечки, связанные гибкой соединительной тканью обеспечивают мобильность и гибкость бронхиального дерева. По мере снижения калибра бронхов в средней оболочке начинает преобладать мышечный компонент. При помощи гладкой мышечной ткани у легких появляется возможность регулировать потоки воздуха, ограничивать распространение инфекции и инородных тел .

3. Наружная оболочка адвентиция . Эта оболочка обеспечивает механическую связь бронхиального дерева с окружающими органами и тканями. Состоит из коллагеновой соединительной ткани.

Ветвления бронхов весьма напоминают вид опрокинутого дерева. Отсюда и название – бронхиальное древо. Началом воздухоносных путей бронхиального древа, можно назвать просвет трахеи. Трахея в своей нижней части раздваивается на два главных бронха, которые направляют воздушные потоки каждый в свое легкое (правое и левое ). Внутри легкого ветвление продолжается на долевые бронхи (3 в левом легком и 2 в правом ), сегментарные и т.д. Воздухоносная система бронхиального дерева оканчивается терминальными бронхиолами, которые дают начало дыхательной части легкого (в ней происходит газообмен между кровью и воздухом легкого ).

Дыхательная часть легкого

Ветвление воздухоносной системы легкого достигает уровня бронхиол. Каждая бронхиола, диаметр которой не превышает 1 мм, дает начало 13 - 16 дыхательным бронхиолам, которые в свою очередь дают начало дыхательным ходам, оканчивающимися альвеолами (гроздевидные мешочки ), в которых происходит основной газообмен.

Строение легочной альвеолы

Легочная альвеола выглядит как гроздь винограда. Состоит из дыхательной бронхиолы, дыхательных ходов и воздушных мешочков. Выстлана внутренняя поверхность альвеол однослойным плоским эпителием тесно связанным с эндотелием капилляров, окутывающих альвеолу как сеть. Именно благодаря тому, что просвет альвеол отделен от просвета капилляра очень тонкой прослойкой, возможен активный газообмен, между легочной и кровеносной системами.

Внутренняя поверхность альвеол покрыта специальным органическим веществом – сурфактантом .
Данное вещество содержит органические составляющие, препятствующие спаданию альвеол при выдохе, в нем находятся антитела, иммунные клетки, обеспечивающие защитные функции. Так же сурфактант препятствует проникновению в просвет альвеол крови.

Расположение легкого в грудной клетке

Легкое лишь в месте соединения с главными бронхами механически фиксировано к окружающим тканям. Остальная его поверхность не имеет механической связи с окружающими органами.


Как же тогда происходит расправление легкого при дыхании?

Дело в том, что легкое расположено в специальной полости грудной клетки называемой плевральной . Эта полость выстлана однослойной слизистой тканью – плеврой . Такая же ткань выстилает и саму внешнюю поверхность легкого. Данные листки слизистых соприкасаются между собой, сохраняя возможность скольжения. Благодаря секретируемой смазке, возможно при вдохе и выдохе скольжение наружной поверхности легкого по внутренней поверхности грудной клетки и диафрагмы.

Мышцы, участвующие в акте дыхания

На самом деле вдох и выдох достаточно сложный и многоуровневый процесс. Для его рассмотрения необходимо ознакомиться с опорно-мышечным аппаратом, участвующем в процессе внешнего дыхания.

Мышцы, участвующие во внешнем дыхании
Диафрагма – это плоская мышца, натянутая как батут по краю реберной дуги. Диафрагма отделяет грудную полость от брюшной. Основная функция диафрагмы – активное дыхание.
Межреберные мышцы – представлены несколькими слоями мышц, посредством которых верхние и нижние края соседних ребер соединяются. Как правило, данные мышцы участвуют в глубоком вдохе и затяжном выдохе.

Механика дыхания

При вдохе происходит ряд одновременных движений, которые приводят к активному нагнетанию воздуха в воздухоносные пути.
При сокращении диафрагмы она уплощается. В плевральной полости создается отрицательное давление благодаря вакууму. Отрицательное давление в плевральной полости передается тканям легкого, которое послушно расширяется, создавая отрицательное давление в дыхательных и воздухоносных отделах. В результате атмосферный воздух устремляется в область пониженного давления – в легкие. Пройдя воздухоносные пути, свежий воздух смешивается с остаточной порцией воздуха легкого (воздух, оставшийся в просвете альвеол и дыхательных путей после выдоха ). В результате чего, концентрация кислорода в воздухе альвеол повышается, а концентрация углекислого газа понижается.

При глубоком вдохе происходит расслабление определенной части косых межреберных мышц и сокращении перпендикулярно расположенной порции мышц, что увеличивает межреберные расстояния, повышая объем грудной клетки. Потому появляется возможность на 20 - 30% увеличить объем вдыхаемого воздуха.

Выдох – в основном это пассивный процесс. Спокойный выдох не требует напряжения каких-либо мышц – требуется лишь расслабление диафрагмы. Легкое, благодаря своей эластичности и упругости само вытесняет основную часть воздуха. Лишь при форсированном выдохе могут напрягаться мышцы живота, межреберные мышцы. К примеру – при чихании или при кашле происходит сокращение мышц брюшного пресса, повышается внутрибрюшное давление, которое через диафрагму передается легочной ткани. Определенная часть межреберных мышц при сокращении приводит к уменьшению межреберных промежутков, что уменьшает объем грудной клетки, приводя к усиленному выдоху.

Кровеносная система легкого

Сосуды легкого берут свое начало от правого желудочка сердца , из которого кровь поступает в легочный ствол. По нему кровь распределяется в правую и левую легочные артерии соответствующих легких. В тканях легкого происходят ветвления сосудов параллельно бронхам. Причем артерии и вены идут параллельно бронху в непосредственной близости. На уровне дыхательной части легкого происходит ветвление артериол на капилляры, которые окутывают альвеолы густой сосудистой сетью. В этой сети и происходит активный газообмен. В результате прохождения крови на уровне дыхательной части легкого происходит обогащение эритроцитов кислородом. Покидая альвеолярные структуры, кровь продолжает свое движение, но уже по направлению к сердцу – к его левым отделам.

Как происходит газообмен в легких?

Поступившая при вдохе порция воздуха изменяет газовый состав полости альвеол. Повышается уровень кислорода, понижается уровень углекислого газа.
Альвеолы окутаны достаточно густой сетью мельчайших сосудов – капилляров, которые, пропуская с медленной скоростью через себя эритроциты, способствуют активному газообмену. Нагруженные гемоглобином эритроциты, проходя через капиллярную сеть альвеол, присоединяют к гемоглобину кислород.

Попутно происходит выведение из состава крови углекислого газа – он покидает кровь и переходит в полость воздухоносных путей. Узнать подробнее о том, как на молекулярном уровне происходит процесс газообмена в эритроцитах, Вы можете в статье: «Эритроциты – как они работают? ».
Посредством легких при дыхании происходит непрерывный газообмен между атмосферным воздухом и кровью. Задача легких обеспечить организм, необходимым количеством кислорода, попутно выводя образующийся в тканях организма и транспортируемый к легким кровью углекислый газ.

Как управляется процесс дыхания?

Дыхание – это полуавтоматический процесс. Мы в состоянии на определенное время задержать наше дыхание или участить дыхание произвольно. Однако в течение дня частота и глубина дыхания определяется в основном автоматически центральной нервной системой. На уровне продолговатого мозга имеются специальные центры регулирующие частоту и глубину дыхания в зависимости от концентрации в крови углекислого газа. Данный центр в головном мозге посредством нервных стволов связан с диафрагмой и обеспечивает ритмичное ее сокращение при акте дыхания. При повреждении центра регуляции дыхания или нервов связывающих этот центр с диафрагмой поддержание внешнего дыхания возможно, лишь при помощи искусственной вентиляции легких.

На самом деле функций у легких намного больше: поддержания кислотно-основного баланса крови (поддержание ph крови в пределах 7,35- 7,47), иммунная защита, очистка крови от микротромбов, регуляция коагуляции крови, выведение токсических летучих веществ. Однако целью данной статьи было освещение дыхательной функции легкого, основных механизмов приводящих к внешнему дыханию.

Легкие – самый объемный внутренний орган нашего организма. Они чем-то очень похожи на дерево (этот отдел так и называется − бронхиальное дерево), увешанное пузырьками-плодиками (). Известно, что легкие содержат почти 700 млн. альвеол. И это функционально оправдано – именно они выполняют главную роль в воздухообмене. Стенки альвеол настолько эластичны, что могут растягиваться в несколько раз при вдохе. Если сравнить площадь поверхности альвеол и кожи, то открывается удивительный факт: несмотря на кажущуюся компактность, альвеолы в десятки раз превышают по площади кожные покровы.

Легкие – великие труженики нашего организма. Они находятся в постоянном движении, то сокращаясь, то растягиваясь. Это происходит днем и ночью против нашего желания. Однако, совсем автоматическим этот процесс назвать нельзя. Он скорее полуавтоматический. Мы ведь можем сознательно задержать дыхание или форсировать его. Дыхание – одна из самых необходимых функций организма. Нелишне будет напомнить, что воздух − это смесь газов: кислорода (21%), азота (около 78%), углекислого газа (около 0,03%). Кроме этого, в нем присутствуют инертные газы и водяные пары.

С уроков биологии многие наверняка помнят опыт с известковой водой. Если выдохнуть через трубочку в прозрачную известковую воду − она помутнеет. Это является неопровержимым доказательством, что в воздухе после выдоха углекислого газа содержится гораздо больше: около 4%. Количество кислорода при этом, наоборот, уменьшается и составляет 14%.

Что управляет легкими или механизм дыхания

Механизм газообмена в легких − весьма интересный процесс. Сами по себе легкие не растянутся и не сожмутся без работы мышц. В легочном дыхании участвуют межреберные мышцы и диафрагма (специальная плоская мышца на границе грудной и брюшной полостей). Когда сокращается диафрагма, в легких понижается давление, и воздух, естественно, устремляется в орган. Выдох происходит пассивно: эластичные легкие сами выталкивают воздух наружу. Хотя иногда мышцы могут сокращаться и при выдохе. Так происходит при активном дыхании.

Весь процесс находится под контролем головного мозга. В продолговатом мозге есть специальный центр регуляции дыхания. Реагирует он на наличие углекислого газа в крови. Как только его становится меньше, центр по нервным путям посылает сигнал диафрагме. Происходит процесс ее сокращения, и наступает вдох. При повреждении дыхательного центра больному вентилируют легкие искусственным путем.

Как в легких происходит обмен газов?

Главная задача легких не просто перегонять воздух, а осуществлять процесс газообмена. В легких меняется состав вдыхаемого воздуха. И здесь основная роль принадлежит кровеносной системе. Что же представляет собой кровеносная система нашего организма? Ее можно представить большой рекой с притоками из маленьких речушек, в которые впадают ручейки. Вот такими ручейками-капиллярами пронизаны все альвеолы.

Кислород, поступивший в альвеолы, проникает в стенки капилляров. Это происходит потому, что в крови и воздухе, содержащимся в альвеолах, давление разное. Венозная кровь имеет меньшее давление, чем воздух альвеол. Поэтому кислород из альвеол устремляется в капилляры. Давление же углекислого газа меньше в альвеолах, чем в крови. По этой причине из венозной крови углекислый газ направляется в просвет альвеол.

В крови имеются специальные клетки – эритроциты, содержащие белок гемоглобин. Кислород присоединяется к гемоглобину и путешествует в таком виде по организму. Кровь, обогащенная кислородом, называется артериальной.

Дальше кровь переносится к сердцу. Сердце − еще один наш неутомимый труженик − перегоняет кровь, обогащенную кислородом, к клеткам тканей. И далее по «реченькам-ручейкам» кровь вместе с кислородом доставляется ко всем клеткам организма. В клетках она отдает кислород, забирает углекислый газ – продукт жизнедеятельности. И начинается обратный процесс: тканевые капилляры – вены – сердце – легкие. В легких обогащенная углекислым газом кровь (венозная) поступает опять в альвеолы и вместе с остатками воздуха выталкивается наружу. Углекислый газ, также как и кислород, переносится с помощью гемоглобина.

Итак, в альвеолах происходит двойной газообмен. Весь этот процесс осуществляется молниеносно, благодаря большой площади поверхности альвеол.

Недыхательные функции легких

Значение легких определяется не только дыханием. К дополнительным функциям этого органа можно отнести:

  • защита механическая: в альвеолы поступает стерильный воздух;
  • защита иммунная: в крови содержатся антитела к различным патогенным факторам;
  • очистительная: кровь выводит газообразные токсические вещества из организма;
  • поддержка кислотно-щелочного равновесия крови;
  • очищение крови от мелких тромбов.

Но какими бы ни казались они важными, все-таки основная работа легких – дыхание.

Экскреторная функция легких - удаление более 200 летучих веществ, образовавшихся в организме или попадающих в него извне. В частности, образующиеся в организме углекислый газ, метан, ацетон, экзогенные вещества (этиловый спирт, этиловый эфир), наркотические газообразные вещества (фторотан, закись азота) в различной степени удаляются из крови через легкие. С поверхности альвеол испаряется также вода.

Кроме кондиционирования воздуха легкие участвуют в защите организма от инфекций. Осевшие на стенки альвеол микроорганизмы захватываются и уничтожаются альвеолярными макрофагами. Активированные макрофаги вырабатывают хемотаксические факторы, привлекающие нейтрофильные и эозинофильные гранулоциты, которые выходят из капилляров и участвуют в фагоцитозе. Макрофаги с поглощенными микроорганизмами способны мигрировать в лимфатические капилляры и узлы, в которых может развиться воспалительная реакция. В защите организма от инфекционных агентов, попадающих в легкие с воздухом, имеют значение образующиеся в легких лизоцим, интерферон, иммуноглобулины (IgA, IgG, IgM), специфические лейкоцитарные антитела.

Фильтрационная и гемостатическая функция легких — при прохождении крови через малый круг в легких задерживаются и удаляются из крови мелкие тромбы и эмболы.

Тромбы разрушаются фибринолитической системой легких. Легкими синтезируется до 90% гепарина, который, попадая в кровь, препятствует ее свертыванию и улучшает реологические свойства.

Депонирование крови в легких может достигать до 15% объема циркулирующей крови. При этом не происходит выключения крови, поступившей в легкие из циркуляции. Наблюдается увеличение кровенаполнения сосудов микроциркуляторного русла и вен легких и «депонированная» кровь продолжает участвовать в газообмене с альвеолярным воздухом.

Метаболическая функция включает: образование фосфолипидов и белков сурфактанта, синтез белков, входящих в состав коллагена и эластических волокон, выработку мукополисахаридов, входящих в состав бронхиальной слизи, синтез гепарина, участие в образовании и разрушении биологически активных и других веществ.

В легких ангиотензин I превращается в высокоактивный сосудосуживающий фактор — ангиотензин II, на 80% инактивируется брадикинин, захватывается и депонируется серотонин, а также 30-40% норадреналина. В них инактивируегся и накапливается гистамин, инактивируется до 25% инсулина, 90-95% простагландинов группы Е и F; образуются простагландин (сосудорасширяющий простаниклин) и оксид азота (NO). Депонированные биологически активные вещества в условиях стресса могут выбрасываться из легких в кровь и способствовать развитию шоковых реакций.

Таблица. Недыхательные функции легких

Функция

Характеристика

Защитная

Очищение воздуха (клетки мерцательного эпителия. реологические свойства), клеточный (альвеолярные макрофаги, нейтрофилы, лимфоциты), гуморальный (иммуноглобулины, комплемент, лактоферрин, антипротеазы, интерферон) иммунитет, лизоцим (серозные клетки, альвеолярные макрофаги)

Детоксикационная

Оксидазная система

Синтез физиологически активных веществ

Брадикинин, серотонин, лейкотриены, тромбоксан А2, кинины, простагландины, NO

Метаболизм различных веществ

В малом круге инактивируется до 80 % брадикини- на, до 98 % серотонина, до 60 % каликреина

Липидный обмен

Синтез поверхностно-активных веществ (сурфактант), синтез собственных клеточных структур

Белковый обмен

Синтез коллагена и эластина («каркас» легкого)

Углеводный обмен

Мри гипоксии до 1/3 потребляемого СЬ на окисление глюкозы

Гемостатическая

Синтез простациклина, NO, АДФ, фибринолиз

Кондиционирующая

Увлажнение воздуха

Выделительная

Удаление продуктов метаболизма

Водный баланс

Испарение воды с поверхности, транскапиллярный обмен (перспирация)

Терморегуляция

Теплообмен в верхних дыхательных путях

Депонирующая

До 500 мл крови

Гипоксическая ва- зоконстрнкция

Сужение сосудов легкого при снижении О2 в альвеолах

Газообмен в легких

Важнейшая функция легких — обеспечение газообмена между воздухом легочных альвеол и кровью капилляров малого круга. Для понимания механизмов газообмена необходимо знать газовый состав обменивающихся между собой сред, свойства альвеолокапиллярных структур, через которые идет газообмен, и учитывать особенности легочного кровотока и вентиляции.

Состав альвеолярного и выдыхаемого воздуха

Состав атмосферного, альвеолярного (содержащегося в легочных альвеолах) и выдыхаемого воздуха представлен в табл. 1.

Таблица 1. Содержание основных газов в атмосферном, альвеолярном и выдыхаемом воздухе

На основе определения процентного содержания газов в альвеолярном воздухе рассчитывают их парциальное давление. При расчетах давление водяного пара в альвеолярном газе принимают равным 47 мм рт. ст. Например, если содержание кислорода в альвеолярном газе равно 14,4%, а атмосферное давление 740 мм рт. ст., то парциальное давление кислорода (р0 2) составит: р0 2 = [(740-47)/100] . 14,4 = 99,8 мм рт. ст. В условиях покоя парциальное давление кислорода в альвеолярном газе колеблется около 100 мм рт. ст., а парциальное давление углекислого газа около 40 мм рт. ст.

Несмотря на чередование вдоха и выдоха при спокойном дыхании состав альвеолярного газа изменяется лишь на 0,2- 0,4%, поддерживается относительное постоянство состава альвеолярного воздуха и газообмен между ним и кровью идет непрерывно. Постоянство состава альвеолярного воздуха поддерживается благодаря малой величине коэффициента вентиляции легких (КВЛ). Этот коэффициент показывает, какая часть функциональной остаточной емкости обменивается на атмосферный воздух за 1 дыхательный цикл. В норме КВЛ равен 0,13-0,17 (т.е. при спокойном вдохе обменивается приблизительно 1/7 часть ФОЕ). Состав альвеолярного газа по содержанию кислорода и углекислого газа на 5-6% отличается от атмосферного.

Таблица. 2. Газовый состав вдыхаемого и альвеолярного воздуха

Коэффициент вентиляции различных областей легких может отличаться, поэтому состав альвеолярного газа имеет разную величину не только в отдаленных, но и в соседних участках легкого. Это зависит от диаметра и проходимости бронхов, выработки сурфактанга и растяжимости легких, положения тела и степени наполнения кровью легочных сосудов, скорости и соотношения длительностей вдоха и выдоха и т.д. Особенно сильное влияние на этот показатель оказывает гравитация.

Рис. 2. Динамика движения кислорода в легких и тканях

С возрастом величина парциального давления кислорода в альвеолах практически не меняется, несмотря на значительные возрастные изменения многих показателей внешнего дыхания (уменьшение , ОЕЛ, проходимости бронхов, увеличение ФОЕ, ООЛ и т.д.). Сохранению устойчивости показателя рО 2 в альвеолах способствует возрастное увеличение частоты дыхания.

Диффузия газов между альвеолами и кровью

Диффузия газов между альвеолярным воздухом и кровью подчиняется общему закону диффузии, согласно которому се движущей силой является разность парциальных давлений (напряжений) газа между альвеолами и кровью (рис. 3).

Газы, находящиеся в растворенном состоянии в плазме крови, притекающей к легким, создают их напряжение в крови, которое выражают в тех же единицах (мм рт. ст.), чтои парциальное давление в воздухе. Средняя величина напряжения кислорода (рО 2) в крови капилляров малого круга равна 40 мм рт. ст., а его парциальное давление в альвеолярном воздухе — 100 мм рт. ст. Градиент давления кислорода между альвеолярным воздухом и кровью составляет 60 мм рт. ст. Напряжение углекислого газа в притекающей венозной крови — 46 мм рт. ст., в альвеолах — 40 мм рт. ст. и градиент давления углекислого газа составляет 6 мм рт. ст. Эти градиенты и являются движущей силой газообмена между альвеолярным воздухом и кровью. Следует учитывать, что указанные величины градиентов имеются лишь в начале капилляров, но мере продвижения крови по капилляру разность между парциальным давлением в альвеолярном газе и напряжением в крови уменьшается.

Рис. 3. Физико-химические и морфологические условия газообмена между альвеолярным воздухом и кровыо

На скорость обмена кислорода между альвеолярным воздухом и кровью влияют как свойства среды, через которую идет диффузия, так и время (около 0,2 с), в течение которого происходит связывание перешедшей порции кислорода с гемоглобином.

Для перехода из альвеолярного воздуха в эритроцит и связи с гемоглобином молекула кислорода должна продиффундировать через:

  • слой сурфактанта, выстилающий альвеолу;
  • альвеолярный эпителий;
  • базальные мембраны и интерстициальное пространство между эпителием и эндотелием;
  • эндотелий капилляра;
  • слой плазмы крови между эндотелием и эритроцитом;
  • мембрану эртроцита;
  • слой цитоплазмы в эритроците.

Суммарное расстояние этого диффузионного пространства составляет от 0,5 до 2 мкм.

Факторы, влияющие на диффузию газов в легких, отражены в формуле Фика:

V = −kS(P 1 −P 2)/d,

где V — объем диффундирующего газа; к — коэффициент проницаемости среды для газов, зависящий от растворимости газа в тканях и его молекулярной массы; S — площадь диффузионной поверхности легких; Р 1 и Р 2 , — напряжение газа в крови и альвеолах; d — толщина диффузионного пространства.

На практике в диагностических целях определяют показатель, называемый диффузионная способность легких для кислорода (ДЛ О2). Она равна объему кислорода, продиффундировавшему из альвеолярного воздуха в кровь через всю поверхность газообмена за 1 мин при градиенте давления кислорода 1 мм рт. ст.

ДЛ О2 = Vo 2 /(P 1 −P 2)

где Vo 2 — диффузия кислорода в кровь за 1 мин; Р 1 — парциальное давление кислорода в альвеолах; Р 2 — напряжение кислорода в крови.

Иногда этот показатель называют коэффициентом переноса. В норме, когда взрослый человек находится в состоянии покоя, величина ДЛ О2 = 20-25 мл/мин мм рт. ст. При физической нагрузке ДЛ О2 увеличивается и может достигнуть 70 мл/ мин мм рт. ст.

У пожилых людей величина ДЛ О2 снижается; в 60 лет она приблизительно на 1/3 меньше, чем у молодых людей.

Для определения ДЛ О2 часто используют технически более просто выполнимое определение ДЛ СО. Делают один вдох воздуха, содержащего 0,3% угарного газа, задерживают дыхание на 10-12 с, затем делают выдох и, определяя содержание СО в последней порции выдыхаемого воздуха, рассчитывают переход СО в кровь: ДЛ О2 = ДЛ СО. 1,23.

Коэффициент проницаемости биологических сред для СО 2 в 20-25 раз выше, чем для кислорода. Поэтому диффузия С0 2 в тканях организма и в легких при меньших, чем для кислорода, градиентах его концентраций, идет быстро и углекислый газ, содержащийся в венозной крови при большем (46 мм рт. ст.), чем в альвеолах (40 мм рт. ст.), парциальном давлении, как правило, успевает выходить в альвеолярный воздух даже при некоторой недостаточности кровотока или вентиляции, в то время как обмен кислорода в таких условиях уменьшается.

Рис. 4. Газообмен в капиллярах большого и малого круга кровообращения

Скорость движения крови в легочных капиллярах такая, что один эритроцит проходит через капилляр за 0,75-1 с. Этого времени вполне достаточно для практически полного уравновешивания парциального давления кислорода в альвеолах и его напряжения в крови легочных капилляров. Для связывания кислорода гемоглобином эритроцита требуется лишь около 0,2 с. Также быстро происходит уравновешивание давления углекислого газа между кровью и альвеолами. В опекающей от легких по венам малого круга артериальной крови у здорового человека в обычных условиях напряжение кислорода составляет 85-100 мм рт. ст., а напряжение СО 2 -35-45 мм рт. ст.

Для характеристики условий и эффективности газообмена в легких наряду с ДЛ 0 применяется также коэффициент использования кислорода(КИ О2), который отражает количество кислорода (в мл), поглощаемого из 1 л, поступающего в легкие воздуха: КИ 02 = V O2 мл*мин -1 /МОД л*мин -1 В норме КИ = 35-40 мл*л -1 .

Газообмен в тканях

Газообмен в тканях подчиняется тем же закономерностям, что и газообмен в легких. Диффузия газов идет по направлению градиентов их напряжения, ее скорость зависит от величины этих градиентов, площади функционирующих кровеносных капилляров, толщины диффузионного пространства и свойств газов. Многие из названных факторов, а следовательно, и скорость газообмена, могут изменяться в зависимости от линейной и объемной скорости кровотока, содержания и свойств гемоглобина, температуры, рН, активности клеточных ферментов и ряда других условий.

Кроме этих факторов обмену газами (особенно кислорода) между кровью и тканями способствуют: подвижность молекул оксигемоглобина (диффузия их к поверхности мембраны эритроцита), конвекция цитоплазмы и интерстициальной жидкости, а также фильтрация и реабсорбция жидкости в микроциркуляторном русле.

Газообмен кислорода

Газообмен между артериальной кровью и тканями начинается уже на уровне артериол с диаметром 30-40 мкм и осуществляется на протяжении всего микроциркуляторного русла до уровня венул. Однако основную роль в газообмене играют капилляры. Для изучения газообмена в тканях полезно представление о гак называемом «тканевом цилиндре (конусе)», в который включаются капилляр и прилежащие к нему тканевые структуры, обеспечиваемые кислородом (рис. 5). О диаметре такого цилиндра можно судить по межкапиллярному расстоянию. Оно в сердечной мышце составляет около 25 мкм, в коре большого мозга — 40 мкм, в скелетных мышцах — 80 мкм.

Движущей силой газообмена в тканевом цилиндре является градиент напряжения кислорода. Различают продольный и поперечный его градиенты. Продольный градиент направлен по ходу капилляра. Напряжение кислорода в начальной части капилляра может составлять около 100 мм рт. ст. По мере продвижения эритроцитов к венозной части капилляра и диффузии кислорода в ткань рО2 падает в среднем до 35-40 мм рт. ст., но в некоторых условиях может понизиться и до 10 мм рт. ст. Поперечный градиент напряжения О2 в тканевом цилиндре может достигать 90 мм рт. ст. (в наиболее удаленных от капилляра участках ткани, в так называемом «мертвом углу», р0 2 может быть 0-1 мм рт. ст.).

Рис. 5. Схематическое представление «тканевого цилиндра» и распределения напряжения кислорода в артериальном и венозном концах капилляра в покое и при выполнении интенсивной работы

Таким образом, в тканевых структурах доставка кислорода к клеткам зависит от степени удаления их от кровеносных капилляров. Клетки, прилежащие к венозному участку капилляра, находятся в худших условиях доставки кислорода. Для нормального течения окислительных процессов в клетках достаточно напряжения кислорода 0,1 мм рт. ст.

На условия газообмена в тканях влияет не только межкапиллярное расстояние, но и направление движения крови в соседних капиллярах. Если направление течения крови в капиллярной сети, окружающей данную ячейку ткани, разнонаправленное, то это увеличивает надежность обеспечения ткани кислородом.

Эффективность захвата кислорода тканями характеризует величина коэффициента утилизации кислорода (КУК) — это выраженное в процентах отношение объема кислорода, поглощенного тканью из артериальной крови за единицу времени, ко всему объему кислорода, доставленному кровью в сосуды ткани за то же время. Определить КУК ткани можно по разнице содержания кислорода в крови артериальных сосудов и в венозной крови, оттекающей от ткани. В состоянии физического покоя у человека средняя величина КУК составляет 25-35%. Даже в покос величина КУК в разных органах неодинакова. В покое КУК миокарда составляет около 70%.

При физической нагрузке степень утилизации кислорода увеличивается до 50-60%, а в отдельных наиболее активно работающих мышцах и сердце может достигать 90%. Такое возрастание КУК в мышцах обусловлено, прежде всего, увеличением в них кровотока. При этом раскрываются не функционировавшие в покое капилляры, увеличивается площадь диффузионной поверхности и уменьшаются диффузионные расстояния для кислорода. Возрастание кровотока может быть вызвано как рефлекторно, так и под влиянием местных факторов, расширяющих сосуды мышц. Такими факторами являются повышение температуры работающей мышцы, увеличение рС0 2 и снижение рН крови, которые не только способствуют увеличению кровотока, но также вызывают снижение сродства гемоглобина к кислороду и ускорение диффузии кислорода из крови в ткани.

Понижение напряжения кислорода в тканях или затруднение его использования для тканевого дыхания называют гипоксией. Гипоксия может быть результатом нарушения вентиляции легких или недостаточности кровообращения, нарушения диффузии газов в тканях, а также недостаточности активности клеточных ферментов.

Развитие тканевой гипоксии скелетных мышц и сердца в определенной мере предотвращается имеющимся в них хромопротеином — миоглобином, выполняющим роль депо кислорода. Простетическая группа миоглобина подобна гему гемоглобина, а белковая часть молекулы представлена одной полипептидной цепью. Одна молекула миоглобина способна связать только одну молекулу кислорода, а 1 г миоглобина — 1,34 мл кислорода. Особенно много миоглобина содержится в миокарде — в среднем 4 мг/г ткани. При полной оксигенации миоглобина создаваемый им запас кислорода в 1 г ткани составит 0,05 мл. Этого кислорода может хватить на 3-4 сокращения сердца. Сродство миоглобина к кислороду выше, чем у гемоглобина. Давление полунасыщения Р 50 для миоглобина находится между 3 и 4 мм рт. ст. Поэтому в условиях достаточной перфузии мышцы кровью он запасает кислород и отдает его лишь при появлении условий, близких к гипоксии. Миоглобин у человека связывает до 14% общего количества кислорода в организме.

В последние годы открыты другие белки, способные связывать кислород в тканях и клетках. Среди них белок нейроглобин, содержащийся в ткани мозга, сетчатке глаза, и цитоглобин, содержащийся в нейронах и других типах клеток.

Гипероксия - увеличенное по отношению к норме напряжение кислорода в крови и тканях. Это состояние может развиться при дыхании человека чистым кислородом (для взрослого такое дыхание допустимо не более 4 ч) или помещении его в камеры с повышенным давлением воздуха. При гипероксии могут постепенно развиваться симптомы кислородного отравления. Поэтому при длительном использовании дыхания газовой смесью с повышенным содержанием кислорода его содержание не должно превышать в ней 50%. Особенно опасно повышенное содержание кислорода во вдыхаемом воздухе для новорожденных. Длительное вдыхание чистого кислорода создает угрозу развития повреждения сетчатки глаза, легочного эпителия и некоторых структур мозга.

Газообмен углекислого газа

В норме напряжение углекислого газа в артериальной крови колеблется в пределах 35-45 мм рт. ст. Градиент напряжения углекислого газа между притекающей артериальной кровью и клетками, окружающими капилляр ткани, может достигать 40 мм рт. ст. (40 мм рт. ст. в артериальной крови и до 60-80 мм в глубоких слоях клеток). Под действием этого градиента углекислый газ диффундирует из тканей в капиллярную кровь, вызывая повышение в ней напряжения до 46 мм рт. ст. и увеличение содержания углекислого газа до 56-58 об%. Около четверти от всего выходящего из ткани в кровь углекислого газа связывается с гемоглобином, остальная часть благодаря ферменту карбоангидразе соединяется с водой и образует угольную кислоту, которая быстро нейтрализуется путем присоединения ионов Na" и К" и в виде этих бикарбонатов транспортируется к легким.

Количество растворенного углекислого газа в организме человека составляет 100-120 л. Это примерно в 70 раз больше запасов кислорода в крови и тканях. При изменении напряжения углекислого газа в крови между нею и тканями идет его интенсивное перераспределение. Поэтому при неадекватной вентиляции легких уровень углекислого газа в крови изменяется медленнее, чем уровень кислорода. Поскольку жировая и костная ткани содержат особенно большое количество растворенного и связанного углекислого газа, то они могут выполнять роль буфера, захватывая углекислый газ при гиперкапнии и отдавая при гипокапнии.

Инструкция

В легочном дыхании принимают участие межреберные мышцы и диафрагма - плоская мышца, находящаяся на границе брюшной и грудной полостей. При сокращении диафрагмы давление в легких понижается давление, и в результате в них устремляется воздух. Выдох делается пассивно: легкие самостоятельно выталкивают воздух наружу. Процесс дыхания контролируется частью головного мозга – продолговатым мозгом. В нем находится центр регуляции дыхания, который реагирует на присутствие в крови углекислого газа. Как только его уровень повышается, центр посылает сигнал диафрагме по нервным путям, она сокращается, и происходит вдох. При повреждениях дыхательного центра применяют искусственную вентиляцию легких.

Процесс газообмена осуществляется в альвеолах легких - микроскопических пузырьках, находящихся на концах бронхиол. Они состоят из сквамозных (дыхательных) альвеоцитов, больших альвеоцитов и хеморецепторов. Основная роль в данном случае принадлежит кровеносной системе. Поступивший в альвеолы легких кислород проникает в стенки капилляров. Подобный процесс происходит вследствие разницы в крови и в воздухе, находящемся в альвеолах. Кровь в венах имеет меньшее давление, поэтому из альвеол кислород устремляется в капилляры. Углекислый газ в альвеолах имеет меньшее давление, поэтому из венозной крови он поступает в просвет альвеол.

В крови находятся эритроциты, содержащие белок гемоглобин. К гемоглобину присоединяются молекулы кислорода. Обогащенная кислородом кровь называется артериальной, она переносится к сердцу. Сердце перегоняет ее к клеткам тканей. В клетках кровь отдает кислород, а взамен забирает углекислый газ, который также переносится с помощью гемоглобина. Затем происходит обратный процесс: кровь поступает из тканевых капилляров в вены, в сердце и в легкие. В легких венозная кровь с углекислым газом поступает в альвеолы, углекислый газ вместе с воздухом выталкивается наружу. Двойной газообмен происходит в альвеолах молниеносно.

Жизненная емкость легких включает в себя дыхательный объем, а также резервные объемы вдоха и выдоха. Дыхательный объем – это количество воздуха, поступающее в легкие при 1-ом вдохе. Если после спокойного вдоха сделать усиленный вдох, в легкие поступит дополнительное количество воздуха, которое называется резервом объема вдоха. После спокойного выдоха можно выдохнуть еще некоторое количество воздуха (резервный объем выдоха). В целом, жизненная емкость легких составляет наибольшее количество воздуха, которое человек способен выдохнуть после глубокого вдоха.

Газообмен в легких совершается вследствие диффузии газов через тонкие эпителиальные стенки альвеол и капилляров. Содержание кислорода в альвеолярном воздухе значительно выше, чем в венозной крови капилляров, а углекислого газа меньше. В результате парциальное давление кислорода в альвеолярном воздухе составляет 100- 110 мм рт. ст., а в легочных капиллярах - 40 мм рт. ст. Парциальное давление углекислого газа, наоборот, выше в венозной крови (46 мм рт. ст.), чем в альвеолярном воздухе (40 мм рт. ст.). Вследствие различия парциального давления газов кислород альвеолярного воздуха будет диффундировать в медленно протекающую кровь капилляров альвеол, а углекислый газ - в обратном направлении. Поступившие в кровь молекулы кислорода взаимодействуют с гемоглобином эритроцитов и в виде образовавшегося оксигемоглобина переносятся к тканям.

Газообмен в тканях осуществляется по аналогичному принципу. В результате окислительных процессов в клетках тканей и органов концентрация кислорода меньшая, а углекислого газа большая, чем в артериальной крови. Поэтому кислород из артериальной крови диффундирует в тканевую жидкость, а из нее - в клетки. Движение углекислого газа происходит в противоположном направлении. В результате кровь из артериальной, богатой кислородом, превращается в венозную, обогащенную углекислым газом.

Таким образом, движущей силой газообмена является разность в содержании и, как следствие, парциальном давлении газов в клетках тканей и капиллярах.

Нервная и гуморальная регуляция дыхания .

Дыхание регулируется дыхательным центром, расположенным в продолговатом мозге. Он представлен центром вдоха и центром выдоха. Нервные импульсы, возникающие в этих центрах поочередно, по нисходящим путям доходят до двигательных диафрагмальных и межреберных нервов, управляющих движениями соответствующих дыхательных мышц. Информацию о состоянии органов дыхания нервные центры получают от многочисленных механо- и хеморецепторов, расположенных в легких, воздухоносных путях, дыхательных мышцах.

Изменение дыхания происходит рефлекторно. Оно меняется при болевом раздражении, при раздражении органов брюшной полости, рецепторов кровеносных сосудов, кожи, рецепторов дыхательных путей. При вдыхании паров аммиака, например, раздражаются рецепторы слизистой оболочки носоглотки, что приводит к рефлекторной задержке дыхания. Это важное приспособление, препятствующее попаданию в легкие ядовитых и раздражающих веществ.

Особое значение в регуляции дыхания имеют импульсы, идущие от рецепторов дыхательных мышц и от рецепторов самих легких. От них в большой степени зависит глубина вдоха и выдоха. Это происходит так: при вдохе, когда легкие растягиваются, раздражаются рецепторы в их стенках. Импульсы от рецепторов легких по центростремительным волокнам достигают дыхательного центра, тормозят центр вдоха и возбуждают центр выдоха. В результате дыхательные мышцы расслабляются, грудная клетка опускается, диафрагма принимает вид купола, объем грудной клетки уменьшается и происходит выдох. Поэтому говорят, что вдох рефлекторно вызывает выдох. Выдох, в свою очередь, рефлекторно стимулирует вдох.



В регуляции дыхания принимает участие кора головного мозга, обеспечивая тончайшее приспособление дыхания к потребностям организма в связи с изменениями условий внешней среды и жизнедеятельности организма.

Вот примеры влияния коры больших полушарий на дыхание. Человек может на время задержать дыхание, по своему желанию менять ритм и глубину дыхательных движений. Влияниями коры головного мозга объясняются предстартовые изменения дыхания у спортсменов - значительное углубление и учащение дыхания перед началом соревнования. Возможна выработка условных дыхательных рефлексов. Если к вдыхаемому воздуху добавить около 5-7% углекислого газа, который в такой концентрации учащает дыхание, и сопровождать вдох стуком метронома или звонком, то через несколько сочетаний один только звонок или стук метронома вызовет учащение дыхания.

Защитные дыхательные рефлексы - чихание и кашель - способствуют удалению попавших в дыхательные пути инородных частиц, излишков слизи и т. д.

Гуморальная регуляция дыхания заключается в том, что увеличение в крови углекислого газа повышает возбудимость центра вдоха благодаря получению нервных импульсов от хеморецепторов, расположенных в крупных артериальных сосудах, стволе мозга.



В настоящее время установлено, что углекислый газ оказывает не только прямое возбуждающее действие на дыхательный центр. Накопление углекислого газа в крови вызывает раздражение рецепторов в кровеносных сосудах, несущих кровь к голове (сонные артерии), и рефлекторно возбуждает дыхательный центр. Подобным образом действуют и другие кислые продукты, поступающие в кровь, например молочная кислота, содержание которой в крови увеличивается во время мышечной работы. Кислоты увеличивают концентрацию водородных ионов в крови, что вызывает возбуждение дыхательного центра.

Гигиена дыхания .

Органы дыхания являются воротами для проникновения болезнетворных микроорганизмов, пыли и других веществ в организм человека. Значительная часть мелких частиц и бактерий оседает на слизистой оболочке верхних дыхательных путей и удаляется из организма при помощи ресничного эпителия. Часть микроорганизмов все же поступает в дыхательные пути и легкие и может вызвать различные заболевания (ангину, грипп, туберкулез и др.). Для предупреждения заболеваний органов дыхания необходимо регулярно проветривать жилые помещения, содержать их в чистоте, совершать продолжительные прогулки на свежем воздухе, избегать посещения многолюдных мест особенно во время эпидемий респираторных заболеваний.

Большой вред органам дыхания наносит курение табачных изделий - как самому курильщику, так и окружающим (пассивное курение).Токсичные вещества табачного дыма отравляют организм, являются причиной возникновения различных заболеваний (бронхита, туберкулеза, астмы, рака легких и др.).

Туберкулез - инфекция известная с глубокой древности и названная "чахоткой", так как заболевшие чахли на глазах, увядали. Это заболевание является хронической инфекцией определенным типом бактерии (Mycobacterium tuberculosis), которая обычно поражает легкие. Инфекция туберкулеза передается не так легко, как другие инфекционные болезни дыхательных путей, поскольку для того, чтобы достаточное число бактерий попали в легкие, необходимо повторное и длительное воздействие частиц, выделяемых при кашле или чихании больного. Существенным фактором риска является нахождение в переполненных помещениях с плохими санитарными условиями и частый контакт с больными туберкулезом.

Туберкулезные микобактерии обладают значительной устойчивостью во внешней среде. В темном месте в мокроте они могут сохранять жизнеспособность в течение многих месяцев. Под действием прямых солнечных лучей микобактерии гибнут через несколько часов. Они чувствительны к высокой температуре, активированным растворам хлорамина, хлорной извести. Как лечить народными средствами этот недуг смотрите тут.

Инфекция имеет две стадии. Сначала бактерии попадают в легкие, где большая их часть уничтожается иммунной системой. Бактерии, которые не уничтожаются, захватываются иммунной системой в твердые капсулы, называемые туберкулы, которые состоят из множества различных клеток. Бактерии туберкулеза не могут вызвать повреждения или симптомы, пока находятся в туберкулах, и у многих людей болезнь никогда не развивается. Только у небольшой части (приблизительно у 10 процентов) инфицированных людей болезнь переходит во вторую, активную стадию.

Активная стадия болезни начинается, когда бактерии выходят из туберкул и поражают другие участки легких. Бактерии могут также попасть в кровь и лимфатическую систему и распространиться по всему организму. У некоторых людей активная стадия наступает через несколько недель после начального инфицирования, но в большинстве случаев вторая стадия начинается только через несколько лет или десятилетий. Такие факторы, как старение, ослабленная иммунная система и плохое питание, увеличивают риск того, что бактерии выйдут за пределы туберкул. Чаще всего при активном туберкулезе бактерии уничтожают ткань легкого и сильно затрудняют дыхание, но болезнь может также может затрагивать и другие части организма, включая мозг, лимфатические узлы, почки и желудочно-кишечный тракт. Если туберкулез не лечить, он может быть смертельным.

Иногда болезнь называют белой чумой из-за пепельного цвета лица ее жертв. Туберкулез является ведущей причиной смерти во всем мире, несмотря на развитие эффективноголечения

Препаратами.

Источником инфекции является больной человек, больные домашние животные и птицы. Наиболее опасны больные открытой формой туберкулеза легких , выделяющие возбудителей с мокротой, каплями слизи при кашле, разговоре и т. д. Менее опасны в эпидемиологическом отношении больные с туберкулезными поражениями кишечника, мочеполовых и других внутренних органов.

Среди домашних животных наибольшее значение как источник инфекции имеет крупный рогатый скот, выделяющий возбудителей с молоком, и свиньи.

Пути передачи инфекции различны. Чаще заражение происходит капельным путем через мокроту и слюну, выделяемые больным при кашле, разговоре, чиханье, а также воздушно-пылевым путем.

Немаловажную роль играет и контактно-бытовой путь распространения инфекции как непосредственно от больного (испачканные мокротой руки), так и через различные предметы обихода, загрязненные мокротой. Пищевые продукты может инфицировать больной туберкулезом; кроме того, инфекция может передаваться от больных туберкулезом животных через их молоко, молочные продукты и мясо.

Восприимчивость к туберкулезу абсолютная. Течение инфекционного процесса зависит от состояния организма и его сопротивляемости, питания, жилищно-бытовой обстановки, условий труда и пр.