Строение кровеносных сосудов таблица. Строение кровеносных сосудов человека. Сосуды, виды. Строение стенок сосудов

У млекопитающих животных кровеносные сосуды разделяются на арте­рии, капилляры и вены.

По артериям кровь выносится из сердца в капиллярную сеть. Под влия­нием работы сердца кровь в артериях находится под большим давлением, достигающим 200 мм ртутного столба. Стенки артерий толстые и очень проч­ные. Перерезанные артерии обычно имеют зияющий просвет.

Капилляры (или волосные сосуды) представляют собой питающие сосу­ды, т. е. участки сосудистого ложа, в которых происходит по законам осмоса и транссудации обмен веществ между кровью и клетками. Количество капил­ляров, пронизывающих всё тело животного, неисчислимо, и кровяное русло в них расширяется раз в 500 и даже 800 по сравнению с диаметром аорты. Это влечёт за собой сильное падение кровяного давления-до 10-30 мм ртутного столба. Благодаря такому низкому давлению стенки капилляров, даже у взрослых животных, сохраняют своё примитивное состояние. Они очень тонкие, что создаёт необходимые условия для обмена веществ.

Вены служат, так же как и артерии, только для проведения крови, но в обратном направлении, т. е. из капиллярной сети в сердце. Однако условия тока крови в венах совершенно иные, чем в артериях, что и отражается на строении их стенок. Так как давление крови в венах ниже, чем даже в капил­лярах, то стенки вен обычно много тоньше стенок артерий, хотя диаметр вен чаще всего бывает больше диаметра соответствующих артерий.

Из изложенного видно, что особенности строения стенок различных сосудов складываются под влиянием работы сердца, которое является в этом отношении организующим началом; это подтверждается всей историей раз­вития сосудистого ложа.

У животных, стоящих ниже рыб, т. е. не имеющих концентрированного сердца, сосуды, соответствующие по своему значению артериям и"венам, в своём строении ничем не отличаются не только друг от друга, но и от капил­ляров, что имеет место у ланцетника.

С появлением настоящего сердца (концентрированного) у круелоротых и рыб начинается диференциация сосудистых стенок вследствие разницы

в давлении крови в артериях и венах. Уже у миног, помимо эндотелиальной оболочки (рис. 78-2), состоящей из одного слоя плоских клеток, в артериях и венах развиваются добавочные оболочки. К числу таковых относятся: из эластических элементов-внутренняя оболочка, или интима (2), из мускуль­ных элементов-средняя оболочка, или медиа (4), и, наконец, из соедини­тельнотканных элементов-наружная оболочка, или адвентиция (5). Более позднее появление добавочных оболочек наблюдается и при эмбриональном развитии.

У низших животных все эти оболочки переходят одна в другую без рез­ких границ/Лишь у птиц и особенно у млекопитающих животных добавоч­ные оболочки не только чётко различаются по своей структуре, но и дают возможность по строению медиа разделить все артерии на три типа-м у-скульный, эластический и смешанный, что также об­условлено в первую очередь работой сердца.

Сосуды выполняют не простую роль каналов для проведения крови, но служат трубками, которые активно участвуют не только в продвижении крови (артерии и вены), но и в явлениях осмоса и транссудации, а также в кровена­полнении органов (капилляры), приспособляясь к постоянно меняющимся условиям. Эта адаптация идёт так далеко, что в случаях длительного усиле­ния работы того или другого органа капиллярная сеть в нём становится более густой, что и обеспечивает достаточный приток крови. Более того, при заку­порке сосуда (вследствие образования тромба или разрастания какой-либо опухоли), когда ток крови в нём, даже при крупном просвете, становится невозможным, за счёт имеющейся или вновь образующейся капиллярной сети развиваются новые пути для тока крови, с излишком компенсирующие выключенный сосуд. (Развитие новых сосудов после перевязки или перерез­ки артерий в условиях эксперимента очень подробно изучено анатомической школой В. Н. Тонкова.)

Чтобы иметь ясное представление о функции сосудистого ложа, необ­ходимо несколько подробнее остановиться на строении артерий, вен и капил­ляров.

* Капилляры

Из всех сосудов более примитивно устроены капилляры-vasacapillaria. Стенки их образованы плоскими эндотелиальными клетками. Крупные капил­ляры одеты снаружи нежной гомогенной оболочкой и клетками Руже, или перицитами (рис. 76-3). Капилляры располагаются в соединительной ткани, с которой они тесно связаны; исключение в этом отношении составляют капилляры мозга и мускулов, где они окружены особыми периваскуляр-ными пространствами»

Как эндотелиальчые клетки, так и клетки Руже обладают способностью сокращаться; вследствие этого просвет капилляров может временно закры­ваться. Кроме того, клеточные элементы капилляров активно участвуют в обмене веществ между кровью и тканями, пропуская одни вещества и задер­живая другие. Эта способность более резко выражена в капиллярах мозга. Наконец, значение эндотелиальной оболочки капилляров (а также артерий и вен) состоит в том, что она предохраняет кровь от непосредственного сопри­косновения с другими тканями, что неминуемо повлекло бы за собой свёрты­вание крови.

Диаметр капилляров у разных животных сильно колеблется (в пределах от 4 до 50 !*). Наиболее крупные капилляры встречаются в печени, костном мозге, зубной пульпе, наиболее мелкие-в головном и спинном мозге, в мус­кулах, в сетчатке глаза и во всех других органах, в которых происходит интенсивный обмен веществ.

624 ОРГАНЫ КРОВООБРАЩЕНИЯ

Длина капилляров обычно не превышает 2 мм, чаще же равна 0,6 -1,0 мм-У человека суммарная длина капилляров исчисляется в 100 000 км, т. е. почти в три раза длиннее экватора, поверхность всех капилляров достигает 6 000 м 2 . Капилляры в органах и тканях образуют сеть весьма разнообразной формы. Широкопетлистые сети капилляров обычно находятся в малодеятель­ных тканях (в оформленной соединительной ткани сухожилий, связок и др), узкопетлистые сети, напротив, свойственны наиболее деятельным органам

Рис. 76. Капиллярная сеть, Рис. 77. Капиллярная сеть в глубоком грудном мускуле: соединяющая артериолу А-курицы, В-голубя.

С венулои. а -мышечное волокно (по Е Ф. Лисицкому).

1 -артериола, 2 -прекапилляр-ная артериола, 3 -юетки Ру-эке, 4 -капилляры, 5 -постка­пиллярная венула, 6 -венула-

(легким, мускулам и железам). Даже в органах одинакового строения капил­лярные сети могут быть различными по своему характеру в зависимости от частной функции органов, например в разных мускулах или в одном и том же мускуле, но разных животных (рис 77-А, В).

Количество капилляров огромно и определяется интенсивностью обме­на веществ у данного животного или в данном овгане. Так, у лягушек насчи­тывают всего лишь около 400 капилляров на 1 мм 2 ,в то время как у лошадей-до 1 350, у собак-до 2 630, а у мелких животных еще больше-до 4 000. Количество капилляров зависит от интенсивности работы органа, например, в сердце человека насчитывают до 5 500 капилляров на 1 мм 2 .

СТРОЕНИЕ КРОВЕНОСНЫХ СОСУДОВ 625

Однако далеко не все капилляры в каждый отрезок времени наполнены кровью. Так как стенки капилляров могут сокращаться, то значительное количество их в состоянии покоя закрыто для кровотока и включается лишь при усиленной работе данного органа. Кровенаполнение работающего мус­кула может увеличиться в 4-5 раз, а по некоторым авторам даже в 20 раз по сравнению со снабжением кровью того же мускула в покое. Выключением капилляров из кровотока достигается равномерное распределение крови в организме между работающими органами, так как крови, вообще говоря, значительно меньше, чем может вместить кровяное русло в целом.

Капилляров нет только в эпителиальной ткани, дентине и гиалиновом хряще.

Артерии представляют наиболее диференцированные отрезки сосуди­стого ложа. Они характеризуются, помимо наличия эндотелиальной оболочки (рис. 78-i), хорошо развитыми добавочными оболочками: интимой (2), медиа (4) и адвенти-цией (5).

Чем ближе к сердцу, тем крупнее диаметр артерии и толще её стенки; чем дальше от сердца, тем меньше диаметр артерии и тоньше её стенки, так как по мере ветвления сосудов кровяное русло расширяется, а кровяное давле­ ние падает; артерии, ближайшие к капиллярам,- наиболее узкие и тонкостенные. Рис 78 Схема строе нпя

В артериях особенно сильно развита и ди- артерии.

ференцирована медиа. Она построена из глад- 2 __эндотелий; г-интима; з-внут-ких мускульных или эластических волокон ренн ^ м |диа^!1адвентация (! чка; или из тех и других вместе. Все эти элемен­ты идут циркулярно.

По строению медиа артерии относят к эластическому, мускульному или смешанному типу. *

В артериях эластического типа медиа построена почти исключительно из эластической ткани, что обусловливает громадную прочность и растяжимость стенок таких артерий. Так, например, просвет аорты может увеличиваться на 30%, а сонные артерии у собак могут выдержать давление, в 20 раз превышающее норму.

Артерии эластического типа встречаются там, где сосуды испытывают наиболее сильное давление крови, например в аорте и в других ближайших к сердцу артериях, как-то: идущих в голову, грудные конечности и в лёгкие. Это вполне понятно: когда сердце выбрасывает толчками кровь в аорту, стен­ки её испытывают большое напряжение и сильно растягиваются, так как это способствует уменьшению трения крови о стенки. Когда сердце вновь рас­слабляется, то растянутые стенки сосудов благодаря своей эластичности воз­вращаются к нормальному состоянию и при сокращении гонят кровь в более мелкие артерии и капилляры. Этим объясняется тот факт, что хотя кровь выбрасывается из сердца ритмическими толчками, но из более мелких арте­рий она всё же вытекает равномерной струёй.

В артериях мускульного типа медиа, напротив, состоит почти исключительно из гладких мускульных клеток. Такие артерии встре­чаются там, где сосуды испытывают сильное давление со стороны окружаю­щих органов (в брюшной полости, на конечностях).

Мускулатура артерий выполняет не только пассивную функцию эласти­ческой ткани, но, что особенно важно, сокращаясь активно, проталкивает

626 ОРГАНЫ КРОВООБРАЩЕНИЯ

кровь на периферию. Так как сумма всех мускульных волокон артерий больше мускулатуры сердца, то роль мускулатуры артерий в передвижении крови очень большая. Это видно из того, что сокращение мускулатуры арте­рий, а следовательно, и сужение их просвета, влечёт за собой усиление рабо­ты сердца, а расширение сосудов, наоборот, вызывает ослабление работы серд­ца или даже его паралич. Поэтому «периферическому сердцу» (М. В. Янов­ский), под которым понимают не только всю мускулатуру артерий, но и эла­стические их элементы, клиницисты уделяют очень большое внимание, ибо изменения в сосудистых стенках вызывают существенную перестройку не только сердца, но и кровообращения в целом.

Артерии смешанного типа являются переходными между артериями эластического и мускульного типа, поэтому средняя оболочка их построена как из эла­стических, так и из глад­ких мускульных элементов. Количество тех и других

Рис. 79. Расположение

венозных клапанов на

разрезанной вене.

I -венозные клапаны; 2 -рас­ширение вены между клапанами.

Рис. 80. Сосуды вен (увеличение в 19 раз).

I -паравенозные артерии; 2 -сосудистая сеть в адвентиции вены; 3 -вена (по А. Т. Акиловой).

колеблется в зависимости от расстояния от сердца и от условий, в которых данный сосуд находится: чем ближе к сердцу, тем больше в стенках ар­терий эластических элементов.

В медиа структурные элементы расположены циркулярно, а в интиме и адвентиции-продольно: эластические-в интиме, соединительнотканные и гладкомускульные-в адвентиции.

В организме артерии находятся в несколько растянутом состоянии, что создаёт лучшие условия для тока крови в них. Этим же объясняется расхо­ждение друг от друга перерезанных концов артерий в ранах, что всегда сле­дует иметь в виду при кровотечениях в хирургической практике.

СТРОЕНИЕ КРОВЕНОСНЫХ СОСУДОВ

Вены

Вены в основном устроены так же, как артерия, с тем существенным отличием, что у них медиа развита чрезвычайно слабо и очень нерезко отде­ляется от мощной адвентиции. В венах очень мало эластических элементов, но зато преобладают гладкомускульные и соединительнотканные элементы, идущие продольно. Этим объясняется спадение тонких стенок вен при отсут­ствии крови в них. Особенно характерны для вен клапаны (рис. 79-1), расположенные в них парами, через промежутки в 2-10 см. Клапаны пред­ставляют карманообразные полулунные удвоения эндотелиальной оболочки. Размещение их допускает ток крови только в направлении к сердцу.

Клапанов больше там, где току крови противодействует сила её собствен­ной тяжести, например в конечностях; напротив, в горизонтально идущих венах клапанов меньше. Их нет совсем в обеих полых венах, в системе ворот­ной вены (за исключением сальниковых вен), в печёночных венах, венах головного и спинного мозга, в лёгочных, почечных и молочных венах, в пе­щеристых телах половых органов, в венах костей, кожной стенки ко­пыта; нет также клапанов во всех мелких венах, диаметром менее 1-1,5 мм (отмечено, что у человека количество клапанов с возрастом сильно уменьшается).

Наличие клапанов способствует более быстрому проталкиванию крови в венах, особенно при дви­жении животного, когда мускулы, сокращаясь, сдавливают вены и го­нят кровь к сердцу или, напротив, расширяют вены, вследствие чего они и наполняются кровью. Возмож­ность пассивного расширения вен объясняется тем, что венозные стен­ки срастаются с фасциями мускулов и сухожилий (подколенные, подмы­шечные, подключичные вены и др.).

Сосуды сосудов

Рис..81. Схема чувствительной иннерва­ции аорты.

1 -интима с эндотелием; 2 -медиа; 3 -адвенти-ция; 4 -околососудистая клетчатка; 5 -нервные волонна; 6 -инкапсулированные тельца и нерв­ные окончания (по Т. А. Григорьевой).

Оболочки сосудов как вторич­ные образования имеют свои собст­венные кровеносные сосуды, через которые и осуществляется их пита­ние (рис. 80). Эти сосуды сосудов - vasa vasorum-отходят или от того же самого сосуда, стенки которого они питают, или от ближайших арте­риальных ветвей и главными своими ветвями располагаются в наружной оболочке, откуда они отдают радиальные ветви уже в среднюю оболочку.

Лимфатические сосуды также располагаются в наружной оболочке сосудов, особенно крупных; кроме того, некоторые артерии оплетены густой сетью лимфатических сосудов, образующих периваскулярные лимфатиче­ские пространства, отделяющие кровеносные сосуды от окружающих тка­ней. Такие пространства найдены в мозге, печени, селезёнке, гаверсовых каналах костей, в слизистой оболочке желудка и, наконец, вокруг капил­ляров в мускулах.

ОРГАНЫ КРОВООБРАЩЕНИЯ

– важнейших физиологических механизм, отвечающий за питание клеток тела и выведение из организма вредных веществ. Главным структурным компонентом являются сосуды. Существует несколько видов сосудов, отличающихся строением, функциями. Заболевания сосудов приводят к серьезным последствиям, негативно влияющим на весь организм.

Общие сведения

Кровеносный сосуд – это полые образования в форме трубки, пронизывающие ткани организма. По сосудам происходит транспортировка крови. У человека система кровообращения замкнутая, ввиду чего движение крови в сосудах происходит под высоким . Транспортировка по сосудам осуществляется за счет работы сердца, выполняющего насосную функцию.

Кровеносные сосуды способны меняться под действием определенных факторов. В зависимости от внешнего воздействия, они расширяются или суживаются. Процесс регулируется нервной системой. Способность к расширению и суживанию обеспечивает специфическое строение кровеносных сосудов человека.

Сосуды состоят из трех слоев:

  • Внешний. Наружная поверхность сосуда покрыта соединительной тканью. Ее функция заключается в защите от механического воздействия. Также задача внешнего слоя заключается в отделении сосуда от расположенных поблизости тканей.
  • Средний. Содержит мышечные волокна, характеризующиеся подвижностью и эластичностью. Они обеспечивают способность сосуда расширяться или суживаться. Кроме этого, функция мышечных волокон среднего слоя заключается в поддержании форму сосуда, за счет чего происходит полноценный беспрепятственный ток крови.
  • Внутренний. Слой представлен плоскими однослойными клетками – эндотелием. Ткань делает сосуды гладкими внутри, благодаря чему снижается сопротивляемость при движении крови.

Следует отметить, что стенки венозных сосудов значительно тоньше артерий. Это связано с незначительным количеством мышечных волокон. Движение венозной крови происходит под действием скелетных , в то время как артериальная передвигается за счет работы сердца.

В целом, кровеносный сосуд – главный структурный компонент сердечнососудистой системы, по которым происходит передвижение крови в ткани и органы.

Виды сосудов

Ранее классификация кровеносных сосудов человека включала в себя только 2 вида – артерии и вены. В настоящий момент выделяют 5 типов сосудов, отличающихся строением, размерами, функциональными задачами.

Виды кровеносных сосудов:

  • . Сосуды обеспечивают движение крови от сердца к тканям. Отличаются толстыми стенками с высоким содержанием мышечных волокон. Артерии постоянно суживаются и расширяются, в зависимости от уровня давления, предотвращая избыточное поступление крови в одни органы и дефицит в других.
  • Артериолы. Небольшие сосуды, представляющие собой конечные ветви артерий. Состоят преимущественно из мышечных тканей. Являются переходным звеном между артериями и капиллярами.
  • Капилляры. Мельчайшие сосуды, пронизывающие органы и ткани. Особенностью являются очень тонкие стенки, через которые кровь способна проникать за пределы сосуды. За счет капилляров происходит питание клеток кислородом. Одновременно происходит насыщение крови углекислым газом, который в дальнейшем выводится из организма через венозные пути.

  • Венулы. Представляют собой небольшие сосуды, соединяющие капилляры и вены. По ним происходит транспортировка отработанного клетками кислорода, остаточных продуктов жизнедеятельности, отмирающих частиц крови.
  • Вены. Обеспечивают движение крови от органов к сердцу. Содержат меньшее количество мышечных волокон, что связано с низким сопротивлением. Из-за этого вены менее толстые и чаще подвергаются повреждениям.

Таким образом, выделяется несколько видов сосудов, совокупность которых формирует систему кровообращения.

Функциональные группы

В зависимости от расположения, сосуды выполняют разные функции. В соответствии с функциональной нагрузкой отличается строение сосудов. В настоящий момент выделяют 6 основных функциональных групп.

К функциональным группам сосудов относятся:

  • Амортизирующие. Сосуды, относящиеся к этой группе, имеют наибольшее количество мышечных волокон. Они являются крупнейшими в человеческом организме и находятся в непосредственно близости от сердца (аорта, легочная артерия). Эти сосуды наиболее эластичны и упруги, что необходимо для сглаживания систолических волн, образующихся во время сердечного сокращения. Количество мышечных тканей в стенках сосудах уменьшается в зависимости от степени удаленности от сердца.
  • Резистивные. К ним относятся конечные, тончайшие кровеносные сосуды. Из-за наименьшего просвета, данные сосуды оказывают наибольшее сопротивление кровотоку. В резистивных сосудах находится множество мышечных волокон, контролирующих просвет. За счет этого регулируется объем крови, поступающей в орган.
  • Емкостные. Выполняют резервуарную функцию, сохраняя большие объемы крови. В данную группу входят крупные венозные сосуды, способные вмещать до 1 л крови. Емкостные сосуды регулируют движение крови к , контролируя ее объем, чтобы снизить нагрузку на сердца.
  • Сфинктеры. Находятся в конечных ветвях мелких капилляров. За счет сужения и расширения, сосуды-сфинктеры контролируют количество поступающей крови. При сужении сфинктеров, кровь не поступает, ввиду чего трофический процесс нарушается.
  • Обменные. Представлены конечными ветвями капилляров. В сосудах происходит обмен веществ, обеспечивающий питание тканей и удаление вредных веществ. Аналогичные функциональные задачи выполняют венулы.
  • Шунтирующие. Сосуды обеспечивают связь между венами и артериями. При этом не затрагиваются капилляры. К ним относятся предсердные, магистральные и органные сосуды.

В целом, выделяют несколько функциональных групп сосудов, обеспечивающих полноценный ток крови и питание всех клеток организма.

Р егуляция деятельности сосудов

Сердечнососудистая система моментально реагирует на внешние изменения или воздействие негативных факторов внутри организма. Например, при возникновении стрессовых ситуаций отмечается учащенное сердцебиение. Сосуды суживаются, за счет чего увеличивается , а мышечные ткани снабжаются большим количеством крови. Находясь в состоянии покоя, большее количество крови притекает к мозговым тканям и органам пищеварения.

За регуляцию сердечнососудистой системы отвечают нервные центры, расположенные мозговой коре и гипоталамусе. Возникающий вследствие реакции на раздражитель сигнал, воздействует на центр, контролирующий тонус сосудов. В дальнейшем через нервные волокна импульс перемещается в сосудистые стенки.

В стенках сосудов расположены рецепторы, воспринимающие скачки давления или же изменения в составе крови. Сосуды также способны передавать нервные сигналы в соответствующие центры, извещая о возможной опасности. Благодаря этому возможна адаптация к меняющимся окружающим условиям, например изменению температуры.

На работу сердца и сосудов оказывают влияние . Данный процесс называется гуморальной регуляцией. Наибольшее влияние на сосуды оказывают адреналин, вазопрессин, ацетилхолин.

Таким образом, деятельность сердечнососудистой системы регулируется нервными центрами головного мозга и эндокринными железами, отвечающими за выработку гормонов.

Заболевания

Как и любой орган, сосуд может поражаться заболеваниями. Причины развития сосудистых патологий часто связаны с неправильным образом жизни человека. Реже болезни развиваются вследствие врожденных отклонений, приобретенных инфекций или на фоне сопутствующих патологий.

Распространенные заболевания сосудов:

  • . Считается одной из самых опасных патологий сердечнососудистой системы. При такой патологии нарушается приток крови через сосуды, питающие миокард – сердечную мышцу. Постепенно вследствие атрофии мышца слабеет. В качестве осложнения выступают инфаркт, а также сердечная недостаточность, при которой возможна внезапная остановка сердца.
  • Нейроциркуляторная дистония. Заболевание, при котором поражаются артерии вследствие сбоев в работе нервных центров. В сосудах из-за избыточного симпатического влияния на мышечные волокна, развивается спазм. Патология часто проявляется в сосудах головного мозга, также поражает артерии, расположенные в других органах. У больного возникают интенсивные боли, перебои в работе сердца, головокружение, изменение давления.
  • Атеросклероз. Болезнь, при которой стенки сосудов суживаются. Это приводит к целому ряду негативных последствий, в числе которых атрофия питающих тканей, а также снижение эластичность и прочности расположенных за сужением сосудов. представляет собой провоцирующий фактор многих сердечнососудистых заболеваний, и приводит к образованию тромбов, инфаркту, инсульту.
  • Аортальная аневризма. При такой патологии на стенках аорты образуются мешковидные выпирания. В дальнейшем образуется рубцовая ткань, а ткани постепенно атрофируются. Как правило, патология развивается на фоне хронической формы гипертонии, инфекционных поражений, в том числе сифилиса, а также при аномалиях развития сосуда. При отсутствии лечения болезни провоцирует разрыв сосуда и смерть больного.
  • . Патология, при которой поражаются вены нижних конечностей. Они сильно расширяются из-за повышенной нагрузки, при этом отток крови к сердцу сильно замедляется. Это приводит к возникновению отеков, болям. Патологические изменения в пораженных венах ног имеют необратимый характер, заболевание на поздних стадиях лечится только хирургическим способом.

  • . Заболевание, при котором варикозное расширение развивается в области геморроидальных вен, питающих нижние отделы кишечника. Поздние стадии болезни сопровождаются выпадением геморроидальных узлов, сильными кровотечениями, нарушением стула. В качестве осложнения выступают инфекционные поражении, в том числе заражение крови.
  • Тромбофлебит. Патология поражает венозные сосуды. Опасность заболевания объясняется потенциальной возможностью отрыва тромба, из-за чего блокируется просвет легочных артерий. Однако крупные вены поражаются крайне редко. Тромбофлебиту подвержены небольшие вены, поражение которых не несет существенной опасности для жизни.

Существует широкий спектр сосудистых патологий, оказывающих негативное влияние на работу всего организма.

Во время просмотра видео вы узнаете о сердечно-сосудистой системе.

Кровеносные сосуды – важный элемент человеческого организма, отвечающий за движение крови. Существует несколько видов сосудов, отличающихся строением, функциональным назначением, размерами, расположением.

Функциональная классификация кровеносных сосудов.

Магистральные сосуды.

Резистивные сосуды.

Обменные сосуды.

Ёмкостные сосуды.

Шунтирующие сосуды.

Магистральные сосуды - аорта, крупные артерии. Стенка этих сосудов содержит много эластических элементов и много гладкомышечных волокон. Значение: превращают пульсирующий выброс крови из сердца в непрерывный кровоток.

Резистивные сосуды - пре- и посткапиллярные. Прекапиллярные сосуды - мелкие артерии и артериолы, капиллярные сфинктеры - сосуды имеют несколько слоёв гладкомышечных клеток. Посткапиллярные сосуды - мелкие вены, венулы - тоже есть гладкие мышцы. Значение: оказывают наибольшее сопротивление кровотоку. Прекапиллярные сосуды регулируют кровоток в микроциркуляторном русле и поддерживают определённую величину кровяного давления в крупных артериях. Посткапиллярные сосуды - поддерживают определённый уровень кровотока и величину давления в капиллярах.

Обменные сосуды - 1 слой эндотелиальных клеток в стенке - высокая проницаемость. В них осуществляется транскапиллярный обмен.

Ёмкостные сосуды - все венозные. В них 2/3 всей крови. Обладают наименьшим сопротивлением кровотоку, их стенка легко растягивается. Значение: за счёт расширения они депонируют кровь.

Шунтирующие сосуды - связывают артерии с венами минуя капилляры. Значение: обеспечивают разгрузку капилярного русла.

Количество анастомозов - величина не постоянная. Они возникают при нарушении кровообращения или недостатке кровоснабжения.

Чувствительность - во всех слоях стенки сосудов много рецепторов. При изменении давления, объёма, химического состава крови - рецепторы возбуждаются. Нервные импульсы идут в центральную нервную систему и рефлекторно воздействуют на сердце, сосуды, внутренние органы. За счёт наличия рецепторов сосудистая система связана с другими органами и тканами организма.

Подвижность - способность сосудов изменять просвет в соответствии с потребностями организма. Изменение просвета происходит за счёт гладких мышц сосудистой стенки.

Гладкие мышцы сосудов обладают способностью самопроизвольно генерировать нервные импульсы. Даже в состоянии покоя есть умеренное напряжение сосудистой стенки - базальный тонус. Под действием факторов гладкие мышцы или сокращаются или расслабляются, изменяя кровоснабжение.

Значение:

регуляция определённого уровня кровотока,

обеспечение постоянного давления, перераспределение крови;

емкость сосудов приводится в соответствие с объёмом кров

Время кругооборота крови - время, в течение которого коровь проходит оба круга кровообращения. При частоте сердечных сокращений 70 в минуту, время равно 20 - 23 с, из них 1/5 времени - на малый круг; 4/5 времени - на большой круг. Определяется время с помощью контрольных веществ и изотопов. - они вводятся внутривенно в v.venaris правой руки и определяется через сколько секунд, это вещество появится в v.venaris левой руки. На время влияют - объёмная и линейная скорости.

Объемная скорость - тот объём крови, что протекает через сосуды в единицу времени. Vлин. - скорость движения любой частицы крови в сосудах. Самая большая линейная скорость в аорте, самая малая - в капиллярах (соответственно 0,5 м/с и 0,5 мм/с). Линейная скорость зависит от общей площади сечения сосудов. За счёт низкой линейной скорости в капиллярах условия для транскапиллярного обмена. Эта скорость в центре сосуда болше, чем на периферии.

Движение крови подчиняется физическим и физиологическим закономерностям. Физические: - законы гидродинамики.

1-й закон: количество протекающей по сосудам крови и скорость её движения зависит от разности давления в начале и конце сосуда. Чем эта разница больше, тем лучше кровоснабжение.

2-й закон: движению крови препятствует периферическое сопротивление.

Физиологические закономерности движения крови по сосудам:

работа сердца;

замкнутость сердечно-сосудистой системы;

присасывающее действие грудной клетки;

эластичность сосудов.

В фазу систолы кровь поступает в сосуды. Стенка сосудов растягивается. В диастолу выброса крови нет, эластичная сосудистая стенка возвращается в исходное состояние, в стенке накапливается энергия. При снижении эластичности сосудов появляется пульсирующий кровоток (в норме - в сосудах малого круга кровообращения). В патологических склеротически изменённых сосудах - симптом Мюссе - движения головы в соответствии с пульсацией.

Подробности

Строение стенки сосуда. Сосудистая стенка имеет три оболички - интиму с эндотелием, медию, состоящую из гладкомышечных клеток и соединительнотканную адвентицию. Каждая оболочка стенки сосуда имеет характерное строение.

Интима (функциональная группа: кровь – плазма – эндотелий).

Эндотелий состоит из одного слоя эндотелиальных клеток , расположенных на базальной мембране, обращенных в просвет сосуда.
Эндотелий выстилает внутреннюю поверхность сосуда и тесно соприкасается с кровью и плазмой. Эти компоненты (кровь, плазма и эндотелий) формируют функциональную группу (сообщество) как в физиологическом, так и в фармакологическом плане.

Из циркулирующей крови эндотелий получает сигналы, которые он интегрирует и передает крови или гладким мышцам, расположенным ниже.

Средняя оболочка - медиа (функциональная группа: гладкомышечные клетки – межклеточный матрикс – интерстициальная жидкость).

Образована главным образом циркулярно расположенными гладкими мышечными волокнами , а также коллагеновыми и эластическими элементами и протеогликанами .
Средняя оболочка артерии придает артериальной стенке форму , ответственна за емкостную и вазомоторную функции . Последняя зависит от тонических сокращений гладкомышечных клеток. Межклеточный матрикс препятствует выходу крови из сосудистого русла. В дополнение к вазомоторной активности, гладкомышечные клетки синтезируют коллаген и эластин для межклеточного матрикса. Более того, однажды активизированные, эти клетки потенциально становятся гипертрофированными, пролиферированными, способными к миграции. Средняя оболочка располагается в интерстициальной жидкости, в большинстве своем поступающей из плазмы крови.
В физиологических условиях комплекс гладкомышечных клеток, межклеточного матрикса и итерстициальной жидкости опосредовано связан с комплексом, включающим эндотелий, кровь и плазму. В патологических условиях описанные комплексы взаимодействуют непосредственно.

Наружная оболочка (адвентиция).

Образована рыхлой соединительной тканью, состоящей из периваскулярных фибробластов и коллагена .
Наружная оболочка состоит из адвентиции, которая, кроме коллагена и фибробластов, содержит также еще капилляры и окончания нейронов вегетативной нервной системы. В органах, периваскулярная фиброзная ткань выступает еще как разделяющая поверхность между артериальной стенкой и окружающей органоспецифической тканью (например, сердечной мышцей, почечным эпителием, и т. д.).

Периваскулярная фиброзная ткань передает сигналы как по направлению к сосуду, так и от него, равно как и нервные импульсы, сигналы, поступающие от окружающих тканей и направляющиеся к средней оболочке артерии.
Степень иннервации артерий, капилляров и вен неодинакова. Артерии, у которых более развиты мышечные элементы в tunica media, получают более обильную иннервацию, вены - менее обильную; v. cava inferior и v. portae занимают промежуточное положение.

Иннервация сосудов.

Более крупные сосуды, расположенные внутри полостей тела, получают иннервацию от ветвей симпатического ствола, ближайших сплетений вегетативной нервной системы и прилежащих спинномозговых нервов ; периферические же сосуды стенок полостей и сосуды конечностей получают иннервацию от проходящих поблизости нервов. Нервы, подходящие к сосудам, идут сегментарно и образуют периваскулярные сплетения, от которых отходят волокна, проникающие в стенку и распределяющиеся в адвентиции (tunica externa) и между последней и tunica media. Волокна иннервируют мышечные образования стенки, имея различную форму окончаний. В настоящее время доказано наличие рецепторов во всех кровеносных и лимфатических сосудах.

Первый нейрон афферентного пути сосудистой системы лежит в спинномозговых узлах или узлах вегетативных нервов (nn. splanchnici, n. vagus); далее он идет в составе кондуктора интероцептивного анализатора (см. «Интероцептивный анализатор»). Сосудодвигательный центр лежит в продолговатом мозге. К регуляции кровообращения имеют отношение globus pallidus, таламус, а также серый бугор. Высшие центры кровообращения, как и всех вегетативных функций, заложены в коре моторной зоны головного мозга (лобная доля), а также впереди и сзади нее. Корковый конец анализатора сосудистых функций располагается, по-видимому, во всех отделах коры. Нисходящие связи головного мозга со стволовыми и спинальными центрами осуществляются, по-видимому, пирамидными и экстрапирамидными трактами.

Замыкание рефлекторной дуги может происходить на всех уровнях центральной нервной системы, а также в узлах вегетативных сплетений (собственная вегетативная рефлекторная дуга).
Эфферентный путь вызывает вазомоторный эффект - расширение или сужение сосудов. Сосудосуживающие волокна проходят в составе симпатических нервов, сосудорасширяющие волокна идут в составе всех парасимпатических нервов краниального отдела вегетативной нервной системы (III, VII, IX, X), в составе передних корешков спинномозговых нервов (признается не всеми) и парасимпатических нервов сакрального отдела (nn. splanchnici pelvini).

Строение и свойства стенок сосудов зависят от функций, выполняемых сосудами в целостной сосудистой системе человека. В составе стенок сосудов выделяют внутреннюю (интима ), среднюю (медиа ) и наружную (адвентиция ) оболочки.

Все кровеносные сосуды и полости сердца изнутри выстланы слоем клеток эндотелия, составляющим часть интимы сосудов. Эндотелий в неповрежденных сосудах образует гладкую внутреннюю поверхность, что способствует снижению сопротивления кровотоку, предохраняет от повреждения и препятствует тромбообразованию. Эндотелиальные клетки участвуют в транспорте веществ через сосудистые стенки и реагируют на механические и другие воздействия синтезом и секрецией сосудоактивных и прочих сигнальных молекул.

В состав внутренней оболочки (интимы) сосудов входит также сеть эластических волокон, особенно сильно развитая в сосудах эластического типа — аорте и крупных артериальных сосудах.

В среднем слое циркулярно располагаются гладкомышечные волокна (клетки), способные сокращаться в ответ на различные воздействия. Таких волокон особенно много в сосудах мышечного типа — конечных мелких артериях и артериолах. При их сокращении происходит увеличение напряжения сосудистой стенки, уменьшение просвета сосудов и кровотока в более дистально расположенных сосудах вплоть до его остановки.

Наружный слой сосудистой стенки содержит коллагеновые волокна и жировые клетки. Коллагеновые волокна увеличивают устойчивость стенки артериальных сосудов к действию высокою давления крови и предохраняют их и венозные сосуды от чрезмерного растяжения и разрыва.

Рис. Строение стенок сосудов

Таблица. Структурно-функциональная организация стенки сосуда

Название

Характеристика

Эндотелий (интима)

Внутренняя, гладкая поверхность сосудов, состоящая преимущественно из одного слоя плоских клеток, основной мембраны и внутренней эластической пластинки

Состоит из нескольких взаимопроникающих мышечных слоев между внутренней и внешней эластичными пластинками

Эластические волокна

Расположены во внутренней, средней и наружной оболочках и образуют относительно густую сеть (особенно в интиме), легко могут быть растянуты в несколько раз и создают эластическое напряжение

Коллагеновые волокна

Расположены в средней и наружной оболочках, образуют сеть, оказывающую растяжению сосуда гораздо большее сопротивление, чем эластические волокна, но, имея складчатое строение, противодействуют кровотоку только в том случае, если сосуд растянут до определенной степени

Гладко-мышечные клетки

Образуют среднюю оболочку, соединены друг с другом и с эластическими и коллагеновымн волокнами, создают активное напряжение сосудистой стенки (сосудистый тонус)

Адвентиция

Является наружной оболочкой сосуда и состоит из рыхлой соединительной ткани (коллагеновых волокон), фибробластов. тучных клеток, нервных окончаний, а в крупных сосудах дополнительно включает мелкие кровеносные и лимфатические капилляры, в зависимости от типа сосудов имеет различную толщину, плотность и проницаемость


Функциональная классификация и виды сосудов

Деятельность сердца и сосудов обеспечивает непрерывное движение крови в организме, перераспределение ее между органами в зависимости от их функционального состояния. В сосудах создается разность давления крови; давление в крупных артериях значительно превышает давление в мелких артериях. Разность давления и обусловливает движение крови: кровь течет из тех сосудов, где давление более высокое, в те сосуды, где давление низкое, от артерий к капиллярам, венам, от вен к сердцу.

В зависимости от выполняемой функции сосуды большого и малого подразделяются на несколько групп:

  • амортизирующие (сосуды эластического типа);
  • резистивные (сосуды сопротивления);
  • сосуды-сфинктеры;
  • обменные сосуды;
  • емкостные сосуды;
  • шунтирующие сосуды (артериовенозные анастомозы).


Амортизирующие сосуды (магистральные, сосуды компрессионной камеры) — аорта, легочная артерия и все отходящие от них крупные артерии, артериальные сосуды эластического типа. Эти сосуды принимают кровь, изгоняемую желудочками под относительно высоким давлением (около 120 мм рт. ст. для левого и до 30 мм рт. ст. для правого желудочков). Эластичность магистральных сосудов создастся хорошо выраженным в них слоем эластических волокон, располагающихся между слоями эндотелия и мышц. Амортизирующие сосуды растягиваются, принимая кровь, изгоняемую под давлением желудочками. Это смягчает гидродинамический удар выбрасываемой крови о стенки сосудов, а их эластические волокна запасают потенциальную энергию, которая расходуется на поддержание артериального давления и продвижение крови на периферию во время диастолы желудочков сердца. Амортизирующие сосуды оказывают небольшое сопротивление кровотоку.

Резистивные сосуды (сосуды сопротивления) — мелкие артерии, артериолы и метартериолы. Эти сосуды оказывают наибольшее сопротивление кровотоку, так как имеют малый диаметр и содержат в стенке толстый слой циркулярно расположенных гладкомышечных клеток. Гладкомышечные клетки, сокращающиеся под действием нейромедиаторов, гормонов и других сосудоактивных веществ, могут резко уменьшать просвет сосудов, увеличивать сопротивление току крови и снижать кровоток в органах или их отдельных участках. При расслаблении гладких миоцитов просвет сосудов и кровоток возрастают. Таким образом, резистивные сосуды выполняют функцию регуляции органного кровотока и влияют на величину артериального давления крови.

Обменные сосуды — капилляры, а также пре- и посткапиллярные сосуды, через которые совершается обмен водой, газами и органическими веществами между кровью и тканями. Стенка капилляров состоит из одного слоя эндотелиальных клеток и базальной мембраны. В стенке капилляров нет мышечных клеток, которые могли бы активно изменить их диаметр и сопротивление кровотоку. Поэтому число открытых капилляров, их просвет, скорость капиллярного кровотока и транскапиллярный обмен изменяются пассивно и зависят от состояния перицитов — гладкомышечных клеток, расположенных циркулярно вокруг прекапиллярных сосудов, и состояния артериол. При расширении артериол и расслаблении перицитов капиллярный кровоток возрастает, а при сужении артериол и сокращении перицитов замедляется. Замедление тока крови в капиллярах наблюдается также при сужении венул.

Емкостные сосуды представлены венами. Благодаря высокой растяжимости вены могут вмещать большие объемы крови и таким образом обеспечивают се своеобразное депонирование — замедление возврата к предсердиям. Особенно выраженными депонирующими свойствами обладают вены селезенки, печени, кожи и легких. Поперечный просвет вен в условиях низкого кровяного давления имеет овальную форму. Поэтому при увеличении притока крови вены, даже не растягиваясь, а лишь принимая более округлую форму, могут вмещать больше крови (депонировать ее). В стенках вен имеется выраженный мышечный слой, состоящий из циркулярно расположенных гладкомышечных клеток. При их сокращении диаметр вен уменьшается, количество депонированной крови снижается и увеличивается возврат крови к сердцу. Таким образом, вены участвуют в регуляции объема крови, возвращающегося к сердцу, влияя на его сокращения.

Шунтирующие сосуды — это анастомозы между артериальными и венозными сосудами. В стенке анастомозирующих сосудов имеется мышечный слой. При расслаблении гладких миоцитов этого слоя происходит открытие анастомозирующего сосуда и снижение в нем сопротивления кровотоку. Артериальная кровь по градиенту давления сбрасывается через анастомозирующий сосуд в вену, а кровоток через сосуды микроциркуляторного русла, включая капилляры, уменьшается (вплоть до прекращения). Это может сопровождаться снижением локального тока крови через орган или его часть и нарушением тканевого обмена. Особенно много шунтирующих сосудов в коже, где артериовенозные анастомозы включаются для снижения отдачи тепла, при угрозе снижения температуры тела.

Сосуды возврата крови в сердце представлены средними, крупными и полыми венами.

Таблица 1. Характеристика архитектоники и гемодинамики сосудистого русла