Бета-лактамные антибиотики: список препаратов. Чем характеризуются антибиотики бета лактамного ряда? Бета лактамные пенициллины


Для цитирования: Сидоренко С.В., Яковлев С.В. БЕТА-ЛАКТАМНЫЕ АНТИБИОТИКИ // РМЖ. 1997. №21. С. 2

В статье представлены подробный анализ наиболее многочисленной группы антибактериальных средств - бета-лактамных антибиотиков, их классификация и микробиологическая характеристика. Приведены рекомендации по их применению в клинической практике.

The paper presents a detailed analysis of the most numerous group of antibacterial agents, b-lactam antibiotics, their classification and microbiological characteristics. Recommendations of their clinical use are given

С.В. Сидоренко, кафедра микробиологии и клинической химиотерапии Российской медицинской академии последипломного образования
С.В. Яковлев, кафедра клинической гематологии и интенсивной терапии Московской медицинской академии им. И.М.Сеченова
S.V. Sidorenko, Department of Microbiology and Clinical Chemotherapy, Russian Medical Academy of Postgraduate Training
S.V. Yakovlev, Department of Clinical Hematology and Intensive Care Therapy, I.M. Sechenov Moscow Medical Academy

1. Классификация и микробиологическая характеристика бета-лактамных антибиотиков (БЛА)

БЛА являются основой современной химиотерапии, так как занимают ведущее или важное место в лечении большинства инфекционных болезней. По количеству применяемых в клинике препаратов - это наиболее многочисленная группа среди всех антибактериальных средств. Их многообразие объясняется стремлением получить новые соединения с более широким спектром антибактериальной активности, улучшенными фармакокинетическими характеристиками и устойчивостью к постоянно возникающим новым механизмам резистентности микроорганизмов. Классификация современных БЛА (основанная на их химической структуре) и препараты, зарегистрированные в Российской Федерации, приведены в табл.1.
1.1. Механизмы действия БЛА и устойчивости к ним микроорганизмов

Общим фрагментом в химической структуре БЛА является бета-лактамное кольцо, именно с его наличием связана микробиологическая активность этих препаратов. Схематическое изображение механизмов действия БЛА и устойчивости к ним микроорганизмов приведено на рисунке.

Благодаря способности связываться с пенициллином (и другими БЛА) эти ферменты получили второе название - пенициллинсвязывающие белки (ПСБ). Молекулы ПСБ жестко связаны с цитоплазматической мембраной микробной клетки, они осуществляют образование поперечных сшивок.
Связывание БЛА с ПСБ ведет к инактивации последних, прекращению роста и последующей гибели микробной клетки. Таким образом, уровень активности конкретных БЛА в отношении отдельных микроорганизмов в первую очередь определяется их аффинностью (сродством) к ПСБ. Для практики важно то, что чем ниже аффинность взаимодействующих молекул, тем более высокие концентрации антибиотика требуются для подавления функции фермента.
Таблица 1. Классификация современных БЛА

I. Пенициллины
1. Природные: бензилпенициллин, феноксиметилпенициллин
2. Полусинтетические
2.1. Пенициллиназостабильные 2.2. Аминопенициллины 2.3.Карбоксипенициллины 2.4. Уреидопенициллины
метициллин ампициллин карбенициллин азлоциллин
оксациллин амоксициллин тикарциллин мезлоциллин
пиперациллин
II.Цефалоспорины
I поколение II поколение III поколение IV поколение
Парентеральные Парентеральные Парентеральные Парентеральные
цефалотин цефуроксим цефотаксим цефпиром
цефалоридин цефамандол цефтриаксон цефипим
цефазолин цефокситин* цефодизим
Оральные цефотетан* цефтизоксим
цефалексин цефметазол* цефоперазон**
цефадроксил Оральные цефпирамид**
цефрадин цефаклор цефтазидим**
цефуроксим-аксетил моксалактам
Оральные
цефиксим
цефподоксим
цефтибутен
III. Комбинированные препараты IV. Карбапенемы V. Монобактамы
ампициллин/сульбактам имипенем азтреонам
амоксициллин/клавуланат меропенем
тикарциллин/клавуланат
пиперациллин/тазобактам
цефоперазон/сульбактам
П р и м е ч а н и е: *препараты, обладющие выраженной антианаэробной активностью (цефамицины);
**препараты, обладающие выраженной активностью в отношении P. aeruginosa и неферментирущих микроорганизмов.

Однако для взаимодействия с ПСБ антибиотику необходимо проникнуть из внешней среды через наружные структуры микроорганизма. У грамположительных микроорганизмов капсула и пептидогликан не являются существенной преградой для диффузии БЛА. Практически непреодолимой преградой для диффузии БЛА является липополисахаридный слой грамотрицательных бактерий. Единственным путем для диффузии БЛА служат пориновые каналы внешней мембраны, которые представляют собой воронкообразные структуры белковой природы, и являются основным путем транспорта питательных веществ внутрь бактериальной клетки.
Следующим фактором, ограничивающим доступ БЛА к мишени действия, являются ферменты бета-лактамазы, гидролизующие антибиотики. Бета-лактамазы, вероятно, впервые появились у микроорганизмов одновременно со способностью к продукции БЛА как факторы нейтрализующие действие синтезируемых антибиотических веществ. В результате межвидового генного переноса бета-лактамазы получили широкое распространение среди различных микроорганизмов, в том числе и патогенных. У грамотрицательных микроорганизмов бета-лактамазы локализуются в периплазматическом пространстве, у грамположительных они свободно диффундируют в окружающую среду.
К практически важным свойствам бета-лактамаз относятся:
Субстратный профиль (способность к преимущественному гидролизу тех или иных БЛА, например пенициллинов или цефалоспоринов или тех и других в равной степени).
Локализация кодирующих генов (плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной наблюдают распространение резистентного клона.
Тип экспрессии (конститутивный или индуцибельный). При конститутивном типе микроорганизмы синтезируют бета-лактамазы с постоянной скоростью, при индуцибельном количество синтезируемого фермента резко возрастает после контакта с антибиотиком (индукции).
Чувствительность к ингибиторам. К ингибиторам относятся вещества бета-лактамной природы, обладающие минимальной антибактериальной активностью, но способные необратимо связываться с бета-лактамазами и, таким образом, ингибировать их активность (суицидное ингибирование). В результате при одновременном применении БЛА и ингибиторов бета-лактамаз последние защищают антибиотики от гидролиза. Лекарственные формы, в которых соединены антибиотики и ингибиторы бета-лактамаз, получили название комбинированных, или защищенных, бета-лактамов. В клиническую практику внедрены три ингибитора: клавулановая кислота, сульбактам и тазобактам. К сожалению, далеко не все известные бета-лактамазы чувствительны к их действию.
Среди многообразия бета-лактамаз необходимо выделить несколько групп, имеющих наибольшее практическое значение
(табл. 2). Более подробную информацию о современной классификации бета-лактамаз и их клиническом значении можно найти в обзорах .

Поскольку пептидогликан (мишень действия БЛА) является обязательным компонентом микробной клетки, все микроорганизмы в той или иной степени чувствительны к антибиотикам этого класса. Однако на практике реальная активность БЛА ограничивается их концентрациями в крови или очаге инфекции. Если ПСБ не угнетаются при концентрациях антибиотиков, реально достижимых в организме человека, то говорят о природной устойчивости микроорганизма. Однако истинной природной резистентностью к БЛА обладают только микоплазмы, так как у них отсутствует пептидогликан - мишень дейтсвия антибиотиков.
Кроме уровня природной чувствительности (или резистентности), клиническую эффективность БЛА определяет наличие у микроорганизмов приобретенной устойчивости. Приобретенная резистентность формируется при изменении одного из параметров, определяющих уровень природной чувствительности микроорганизма. Ее механизмами могут быть:
I. Снижение аффинности ПСБ к антибиотикам.
II. Снижение проницаемости внешних структур микроорганизма.
III. Появление новых бета-лактамаз или изменение характера экспрессии имеющихся.
Перечисленные эффекты являются результатом различных генетических событий: мутаций в существующих генах или приобретением новых.

1.2. Характеристика микробиологической активности БЛА и область их применения

Грамположительные микроорганизмы

Подавляющее большинство БЛА обладает высокой активностью в отношении грамположительных микроорганизмов, единственным исключением является группа монобактамов.
Streptococcus spp. отличаются высоким уровнем чувствительности к БЛА. При этом наиболее активны природные пенициллины, что дает основание признать их средствами выбора при лечении стрептококковых инфекций. Между отдельными представителями полусинтетических пенициллинов и цефалоспоринов отмечают определенные различия в уровне активности, однако оснований считать их клинически значимыми нет.
Среди S. pyogenes до сих пор не обнаружено ни одного штамма, устойчивого к пенициллину и соотвественно к другим БЛА. Среди других стрептококков частота резистентности подвержена значительным вариациям. Во всех случаях она связана с модификацией ПСБ, продукции бета-лактамаз у стрептококков не выявлено. Наибольшее практическое значение имеет распространение пенициллинрезистентных пневмококков в отдельных географических регионах (Испания, Франция, Венгрия), частота различной степени устойчивости достигает 60% . Масштабных, методологически корректных исследований о распространении устойчивости к пенициллину среди пневмококков на территории РФ не проводилось, однако ограниченные данные не дают оснований рассматривать в настоящее время этот феномен как серьезную проблему. Это не означает
, что ситуация не может измениться в худшую сторону уже в ближайшее время. В некоторых сообщениях отмечается тенденция к повышению частоты резистентности к пенициллину среди стрептококков групп В и Viridans , однако в целом находки таких штаммов остаются весьма редкими.
Таблица 2. Характеристика основных бета-лактамаз

Ферменты Характеристика
Стафилококковые бета-лактамазы, плазмидные, класс А Гидролизуют природные и полусинтетические пенициллины, кроме метициллина и оксациллина.
Чувствительны к ингибиторам.
Плазмидные бета-лактамазы грамоотрицательных бактерий широкого спектра, класс А Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I поколения.
Чувствительны к ингибиторам.
Плазмидные бета-лактамазы грамоотрицательных бактерий расширенного спектра, класс А Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I - IV поколений.
Чувствительны к ингибиторам.
Хромосомные бета-лактамазы грамоотрицательных бактерий, класс С Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I - III поколений.
Не чувствительны к ингибиторам.
Хромосомные бета-лактамазы грамоотрицательных бактерий, класс А Гидролизуют природные и полусинтетические пенициллины цефалоспорины I - II поколений. Чувствительны к ингибиторам.
Хромосомные бета-лактамазы грамоотрицательных бактерий, класс В Эффективно гидролизуют практически все бета-лактамы, включая карбапенемы. Не чувствительны к ингибиторам.

Предсказать чувствительность или устойчивость пенициллинрезистентных стрептококков к другим БЛА достаточно сложно. Часто активность сохраняют цефалоспорины III поколения, карбапенемы активны практически всегда. Полусинтетические пенициллины и цефалоспорины I - II поколений чаще всего неактивны . Поскольку резистентность у стрептококков не связана с продукцией бата-лактамаз, защищенные препараты преимуществ не имеют. Наиболее полно вопросы перекрестной резистентности к БЛА изучены для пневмококков . В настоящее время признано целесообразным при обнаружении штамма пневмококков, устойчивого к пенициллину, оценивать его чувствительность к другим БЛА методом серийных разведений.
Enterococcus spp. отличаются значительно меньшей чувствительностью к БЛА, чем другие грамположительные микроорганизмы, что связано с пониженной аффинностью их ПСБ к этим антибиотикам . Для энтерококков характерны выраженные межвидовые различия в чувствительности к БЛА, наибольшая чувствительность свойственна E. faecalis. E. faecium и другие редкие виды энтерококков следует считать природно устойчивыми, они синтезируют значительное количество ПСБ , отличающегося низкой аффинностью к БЛА .
Из всех БЛА клинически значимой антиэнтерококковой активностью (в отношении E. faecalis) обладают природные, амино-, уреидопенициллины, частично цефалоспорины IV поколения и карбапенемы. Цефалоспорины I - III поколений реальной активностью не обладают. Препаратами выбора для лечения энтерококковых (E. faecalis) инфекций являются аминопенициллины. Важно отметить, что БЛА в отношении энтерококков проявляют
только бактериостатическую активность, бактерицидное действие проявляется только при комбинации с аминогликозидами.
Staphylococcus spp. (как S. aureus, так и коагулазонегативные) проявляют высокий уровень природной чувствительности к БЛА, наименьшими величинами минимальной подавляющей концентрации (МПК) отличаются природные и аминопенициллины. В ряду цефалоспоринов от I к III поколению наблюдается некоторое снижение активности, однако клинического значения это не имеет. Исключением являются оральные цефалоспорины цефиксим и цефтибутен, они практически лишены антистафилококковой активности.
Стафилококки оказались первыми микроорганизмами, распространение приобретенной резистентности среди которых привело к резкому снижению эффективности традиционной терапии.

Механизм действия бета-лактамных антибиотиков. Обязательным компонентом наружной мембраны прокариотических микроорганизмов (кроме микоплазм) является пептидогликан, представляющий собой биологический полимер, состоящий из параллельных полисахаридных цепей. Пептидогликановый каркас приобретает жесткость при образовании между полисахаридными цепями поперечных сшивок. Поперечные сшивки образуются через аминокислотные мостики, замыкание сшивок осуществляют ферменты карбокси- и транспептидазы (ПСБ). Бета-лактамные антибиотики способны связываться с активным центром фермента и подавлять его функцию. Специфическая активность антибиотиков определяется наличием бета-лактамного кольца. Боковые радикалы определяют фармакокинетические особенности, устойчивость к действию бета-лактамаз и другие второстепенные свойства.

После внедрения в 40-х годах в медицинскую практику пенициллина менее чем через 10 лет частота резистентности к этому антибиотику в отдельных стационарах достигла 50%, а в настоящее время практически повсеместно, в том числе и в РФ, превышает 60 - 70% . Устойчивость оказалась связанной с продукцией плазмидных бета-лактамаз, ее удалось сравнительно легко преодолеть путем создания полусинтетических пенициллинов (метициллина и оксациллина), а также цефалоспориновых антибиотиков, устойчивых к ферментативному гидролизу. Амино-, карбокси- и уреидопенициллины разрушаются этими ферментами так же эффективно, как и природные пенициллины, иногда наблюдают частичный гидролиз цефалоспоринов III поколения. Стафилококковые бета-лактамазы эффективно подавляются ингибиторами, что обеспечивает высокую активность защищенных пенициллинов.
Однако уже в 1961 г. появились первые сообщения о выделении метициллинрезистентных стафилококков (МРС), как Staphylococcus aureus, так и коагулазонегативных . Резистентность оказалась связанной с появлением у микроорганизма нового ПСБ (ПСБ2а, или ПСБ2"), отсутствующего у чувствительных штаммов и обладающего пониженной аффинностью ко всем БЛА. Поскольку на практике для детекции метициллинрезистентности обычно используют оксациллин (он более стабилен при хранении), то появился термин-синоним "оксациллинрезистентность".
Таблица 3. Характеристика природной активности бета-лактамных антибиотиков и частоты приобретенной резистентности основных клинически значимых микроорганизмов

Микроорганизмы Природные пеницил лины Пеницил линазо стабиль ные пени циллины Амино пеницил лины Карбок сипени циллины Уреидо пенициллины Защищен ные пени циллины Цефа лоспори ны I поко ления Цефа лоспори ны II поко ления Цефа лоспори ны III поко ления Цефа лоспори ны IV поко ления Моно бактамы Карба пенемы
Streptococcus
-pyogenes
-pneumoniae
-agalactiae
-viridans group
Enterococcus faecalis
Enterococcus faecium
Staphylococcus spp. (MS)
Staphylococcus spp. (MR)
Neisseria spp.
Moraxella spp.
E.coli, Shigella spp.
Salmonella spp., Proteus mirabilis
Haemophilus spp.
Enterobacter spp., Citrobacter freudii, Serratia spp., Morganella morganii, Providencia stuartii , P.rettgeri.
Pseudomonas spp.
Bacteroides fragilis
П р и м е ч а н и е: ++ - высокая активность; + - реальная активность; +/- - слабая активность; - - отсутствие активности; r - частота приобретенной резистентности от единичных штаммов до 5 - 10%; R - частота приобретенной резистентности от 10 до 50%; r-R - частота приобретенной резистентности между отдельными видами в группе существенно варьирует, существенная вариабельность в географическом распространении резистентности; MS - метициллинчувствительные стафилококки; MR - метициллинрезистентные стафилококки; 1) - реальной антианаэробной активностью обладают цефотетан, цефокситин, цефметазол; 2) - реальной антипсевдомонадной активностью обладают цефтазидим, цефоперазон, цефпирамид.

При исследованиях in vitro в отношении некоторых штаммов МРС цефалоспорины и карбапенемы проявляют достаточно высокую активность. Формально по величине МПК или диаметру зоны ингибиции роста такие штаммы следует оценивать как чувствительные. Однако клинические исследования показали, что при наличии метициллинрезистентности эффективность всех БЛА значительно снижается независимо от их активности in vitro . Учитывая эти наблюдения, общепринятой точкой зрения по интерпретации результатов оценки антибиотикочувствительности стафилококков является следующая:
при детекции у стафилококков устойчивости к оксациллину ни один из БЛА (независимо от их активности in vitro) не может быть рекомендован для лечения.
Оценка чувствительности к оксациллину является ключевым моментом в планировании лечения стафилококковых инфекций.
Таким образом:

  1. При инфекциях, вызванных штаммами, чувствительными к оксациллину и не продуцирующими бета-лактамазы (что в настоящее время наблюдается редко), препаратами выбора являются природные пенициллины.
  2. Если этиологический агент продуцирует бета-лактамазы, но сохраняет чувствительность к оксациллину, последний антибиотик является препаратом выбора. Практически равную эффективность будут проявлять защищенные пенициллины, цефалоспорины и карбапенемы.
  3. При выявлении оксациллинрезистентных штаммов применение БЛА должно быть исключено. В связи с высокой частотой ассоциированной устойчивости таких штаммов к антибиотикам других групп (макролидам, фторхинолонам, аминогликозидам и др.) перечень альтернативных препаратов ограничен. В части случаев активность могут сохранять рифампин и фузидиевая кислота, за крайне редкими исключениями (известны единичные устойчивые штаммы S. haemoliticus) активны гликопептидные антибиотики.

Грамотрицательные микроорганизмы

Грамотрицательные кокки

Neisseria (meningitidis, gonorrhoeae) и Moraxella обладают высокой природной чувствительностью к БЛА. Их внешняя мембрана проницаема не только для цефалоспоринов и полусинтетических пенициллинов, но и для природных (по этому признаку перечисленные микроорганизмы отличаются от других грамотрицательных). Традиционно препаратами выбора при лечении вызванных этими микроорганизмами инфекций считаются природные пенициллины, однако цефалоспорины (прежде всего III поколения) по уровню микробиологической активности им не уступают. Достаточно активны полусинтетические пенициллины, кроме оксациллина и метициллина.
В частоте распространения приобретенной резистентности, связанной с продукцией плазмидных бета-лактамаз класса А, среди грамотрицательных кокков наблюдают выраженные различия. Чаще всего продукцию плазмидных бета-лактамаз широкого спектра выявляют у Moraxella cattarhalis (до 60 - 80% штаммов), ферменты гидролизуют природные и полусинтетические пенициллины, цефалоспорины I поколения . Остальные БЛА (цефалоспорины II - III поколений, защищенные пенициллины, карбапенемы и монобактамы) сохраняют высокую активность.
Отмечается нарастание частоты продукции бета-лактамаз c аналогичными описанным ранее свойствами у N. gonorrhoeae, что снижает роль пенициллина как средства выбора при лечении гонореи и выдвигает на первое место цефалоспорины III поколения .
В отличие от сказанного выше у N. meningitidis продукцию бета-лактамаз выявляют крайне редко, описаны штаммы со сниженной чувствительностью к пенициллину, обусловленной модификацией ПСБ и снижением проницаемости наружной мембраны. Значение пенициллина как средства выбора при лечении менингококковой инфекции сохраняется .

Грамотрицательные бациллы

Характеризуя природную активность БЛА в отношении грамотрицательных палочек (Enterobacteriaceae, Pseudomonas и др.), необходимо остановиться на некоторых особенностях этих микроорганизмов. Прежде всего, так как их наружная мембрана малопроницаема для природных пенициллинов, то в лечении соответствующих инфекций указанные антибиотики значения не имеют.
Вторым принципиально важным свойством грамотрицательных палочек является наличие в составе их хромосом генов, кодирующих бета-лактамазы класса А или С. Хромосомные бета-лактамазы не выявлены у микроорганизмов рода Salmonella.
Именно способностью к синтезу хромосомных бета-лактамаз и его характером (конститутивным или индуцибельным) определяется уровень природной чувствительности грамотрицательных бацилл к БЛА. В зависимости от типа экспрессии хромосомных бета-лактамаз микроорганизмы можно разделить на несколько групп.
E.coli, Shigella spp., Salmonella spp., Proteus mirabilis, Haemophilus spp. относятся к первой группе, у них продукция хромосомных бета-лактамаз класса С или не определяется, или выявляется в минимальном количестве (конститутивно низкий уровень продукции). Они обладают природной чувствительностью ко всем БЛА, кроме природных и полусинтетических пенициллиназостабильных пенициллинов, чувствительность к цефалоспоринам I поколения варьирует. Haemophilus spp. к цефалоспоринам I поколения не чувствительны.
Однако реальная активность амино-, карбокси-, уреидопенициллинов и цефалоспоринов I поколения ограничена распространением приобретенной резистентности, связанной с продукцией бета-лактамаз широкого спектра. Частота их выявления у E.coli. Proteus mirabilis на территории РФ в некоторых случаях (особенно при госпитальных инфекциях) достигает 50%. Защищенные пенициллины сохраняют активность в отношении таких штаммов. Таким образом, в зависимости от тяжести и характера инфекции (госпитальная или внебольничная) средствами выбора для эмпирического лечения инфекций, вызванных микроорганизмами этой группы, могут быть защищенные пенициллины или цефалоспорины II - III поколений.
Следует отметить, что при шигеллезе и кишечном сальмоонеллезе реальное клиническое значение из бета-лактамов имеют только аминопенициллины, однако их роль в связи с распространением бета-лактамаз широкого спектра снижается, реальной альтернативой являются фторхинолоны. Средствами выбора для лечения генерализованного сальмонеллеза из БЛА следует считать цефалоспорины III поколения (бета-лактамазы расширенного спектра, гидролизующие эти антибиотики, до сих пор встречаются редко
).
Klebsiella spp., Proteus vulgaris, Citrobacter diversus также конститутивно продуцируют незначительное количество хромосомных бета-лактамаз, относящихся к классу А. Несмотря на низкий уровень продукции, эти ферменты гидролизуют амино-, карбокси- и частично уреидопенициллины, а также цефалоспорины I поколения. Бета-лактамазы P. vulgaris эффективно гидролизуют цефалоспорины II поколения. Таким образом, реальной природной чувствительностью перечисленные микроорганизмы обладают к цефалоспоринам III - IV поколений, защищенным пенициллинам, монобактамам и карбапенемам.
Основным механизмом приобретенной резистентности является продукция плазмидных бета-лактамаз широкого и расширенного спектра. Последние ограничивают активность не только полусинтетических пенициллинов, но и цефалоспоринов III - IV поколений. Достаточно часто возникают вспышки госпитальных инфекций, вызванных штаммами Klebsiella spp. и другими микроорганизмами, продуцирующими указанные бета-лактамазы, при этом наблюдают интенсивное межвидовое распространение детерминант резистентности . Лечение таких инфекций осложняется тем, что стандартные методы оценки антибиотикочувствительности в значительной части случаев (до 30%) не выявляют этот механизм резистентности . В настоящее время вопрос о том, насколько защищенные пенициллины эффективны в отношении инфекций, вызываемых штаммами, продуцирующими бета-лактамазы расширенного спектра, не решен.
В общем, при внебольничных инфекциях, вызываемых данной группой микроорганизмов, цефалоспорины III поколения являются высокоэффективными средствами, прогнозирование же их эффективности при госпитальных инфекциях без лабораторных исследований весьма затруднительно. Ситуация осложняется и тем, что у клебсиелл уже описана устойчивость к карбапенемам
.
Enterobacter spp., Citrobacter freudii, Serratia spp., Morganella morganii, Providencia stuartii и P.rettgeri (типичные госпитальные патогены) являются одной из наиболее сложных групп для лечения БЛА. У этих микроорганизмов выявляется индуцибельная продукция хромосомных бета-лактамаз класса С. Поскольку большинство БЛА разрушаются указанными ферментами, уровень природной чувствительности бактерий определяется способностью антибиотиков индуцировать синтез. Так как аминопенициллины, цефалоспорины I поколения относятся к сильным индукторам, то микроорганизмы к ним устойчивы. Цефалоспорины II поколения в меньшей степени индуцируют хромосомные бета-лактамазы класса С, уровень их активности близок к промежуточному, но считать их средствами выбора для лечения инфекций, вызываемых рассматриваемой группой микроорганизмов, нельзя. Цефалоспорины III - IV поколений, монобактамы, карбокси- и уреидопенициллины в незначительной степени индуцируют синтез хромосомных бета-лактамаз и, следовательно, проявляют высокую активность. Карбапенемы относятся к сильным индукторам, но обладают устойчивостью к действию ферментов, что проявляется в их высокой природной активности.
Из механизмов приобретенной резистентности в рассматриваемой группе микроорганизмов основное значение имеют плазмидные бета-лактамазы широкого и расширенного спектра, а также гиперпродукция хромосомных бета-лактамаз. Феномен гиперпродукции связан с мутациями в регуляторных областях генома, приводящих к дерепрессии синтеза фермента. Особое значение этого механизма устойчивости объясняется тем, что он с достаточно высокой частотой формируется в процессе лечения цефалоспоринами III поколения пациентов с тяжелыми госпитальными пневмониями или бактериемией, вызываемой Enterobacter spp. и Serratia marcescens (селекция мутантов-гиперпродуцентов на фоне элиминации чувствительных микроорганизмов) . Единственными БЛА, сохраняющими активность в отношении штаммов-гиперпродуцентов, являются цефалоспорины IV поколения и карбапенемы.
Многообразие возможных механизмов резистентности у рассматриваемой группы патогенов и возможность их сочетаний крайне затрудняют планирование эмпирической терапии. На сегодняшний день даже карбапенемы невозможно рассматривать как препараты, обладающие абсолютной активностью (описаны единичные штаммы S. marcescens и Enterobacter, обладающие устойчивостью к карбапенемам в результате продукции карбапенемаз ).

Неферментирующие микроорганизмы

К микроорганизмам, обладающим природной устойчивостью ко многим БЛА, относятся Pseudomonas spp. (прежде всего P. aeruginosa), Acinetobacter spp. и другие неферментирующие бактерии, что связано с низкой проницаемостью их внешних структур и продукцией хромосомных бета-лактамаз класса С. Активностью в отношении P. aeruginosa обладают карбокси- и уреидопенициллины, некоторые из цефалоспоринов III поколения (цефтазидим, цефоперазон, цефпирамид), монобактамы и карбапенемы (меропенем несколько превосходит имипенем). Приобретенная резистентность этих микроорганизмов может быть связана со многими механизмами: продукцией плазмидных бета-лактамаз широкого и расширенного спектров, металлоэнзимов, гиперпродукцией хромосомных бета-лактамаз и снижением проницаемости, часто наблюдают сочетание нескольких механизмов. На практике это приводит к появлению и распространению штаммов, устойчивых ко всем БЛА. Среди псевдомонад возможно формирование изолированной устойчивости к имипенему , связанной с нарушением структуры порина D2, являющегося уникальным путем для транспорта этого антибиотика; такие штаммы часто сохраняют чувствительность к меропенему.
В определенных условиях (чаще в отделениях интенсивной терапии и реанимации) на фоне применения карбапенемов, обладающих максимально широким спектром действия, в результате элиминации чувствительных микроорганизмов возможна селекция видов, продуцирующих бета-лактамазы класса В (металлоэнзимы) и, как следствие, проявляющих природную устойчивость к этим антибиотикам. К таким микроорганизмам относятся Stenotphomonas maltophillia, некоторые виды Flavobacterium.

Анаэробные микроорганизмы

Bacteroides fragilis и родственные микроорганизмы проявляют достаточно высокую природную устойчивость к БЛА. Большинство других анаэробов высокочувствительны к БЛА, в том числе и к природным пенициллинам. Clostridium difficile устойчивы ко всем БЛА.
Устойчивость B. fragilis в основном определяется продукцией этими микроорганизмами хромосомных бета-лактамаз класса А. Благодаря устойчивости к гидролизу цефамициновые антибиотики (цефотетан, цефокситин и цефметазол) обладают клинически значимой антианаэробной активностью. Высокоактивны также защищенные бета-лактамы и карбапенемы, случаи приобретенной устойчивости к ним крайне редки.
Перед рассмотрением клинического применения БЛА необходимо отметить, что если для внебольничных инфекций уровень и механизмы приобретенной резистентности этиологических агентов могут быть достаточно точно предсказаны для обширных географических регионов на основании специальных исследований, то при госпитальных инфекциях эти показатели могут быть уникальными для отдельных стационаров даже в пределах одного города. Следовательно, если при внебольничных инфекциях обоснование эффективной эмпирической терапии представляется вполне реальной задачей, то при госпитальных инфекциях вероятность эффективности эмпирической терапии резко снижается и соответственно возрастает значение лабораторных исследований.

2. Клиническое применение БЛА

Природные пенициллины

Являются препаратами выбора при лечении стрептококковой, пневмококковой, менингококковой и гонококковой инфекций. В последние годы отмечается увеличение частоты резистентных штаммов пневмококков и гонококков к бензилпенициллину, в связи с чем при эмпирической терапии заболеваний, вызванных этими микроорганизмами, рекомендуется использовать другие препараты (цефалоспорины III поколения, макролиды); бензилпенициллин может применяться при установленной к нему чувствительности S. pneumoniae и N. gonorrhoeae.
Бензилпенициллин выпускается в виде натриевой и калиевой солей для парентерального введения (антибиотик при приеме внутрь разрушается кислотой желудочного сока). Калиевая соль бензилпенициллина содержит большое количество калия (1,7 мэкв в 1 млн ЕД), в связи с чем большие дозы этой лекарственной формы пенициллина нежелательны у больных с почечной недостаточностью. Бензилпенициллин быстро выводится из организма, поэтому требуется частое введение препарата (от 4 до 6 раз в сутки в зависимости от тяжести инфекции и дозы). Большие дозы бензилпенициллина (20 - 30 млн ЕД в сутки) применяются для лечения тяжелых инфекций, вызванных чувствительными к нему микроорганизмами: менингита, инфекционного эндокардита, газовой гангрены. Средние дозы препарата (10 - 18 млн ЕД в сутки) применяются при лечении аспирационной пневмонии или абсцесса легких, вызванного стрептококкоками группы А или анаэробными кокками, а также в комбинации с аминогликозидами при лечении энтерококковой инфекции (эндокардит). Малые дозы бензилпенициллина (4 - 8 млн ЕД в сутки) применяются при лечении пневмококковой пневмонии.
Бензилпенициллин в больших дозах может также назначаться при инфекции, вызванной Listeria, однако в этом случае предпочтительнее использовать ампициллин. Не рекомендуется применять бензилпенициллин в суточных дозах свыше 30 млн ЕД из-за риска развития токсических проявлений со стороны центральной нервной системы (судороги).
Пролонгированные препараты пенициллина (бензатинпенициллин или бициллин) применяются для профилактики ревматизма и лечения сифилиса.
Феноксиметилпенициллин не разрушается соляной кислотой желудка, его назначают внутрь. По сравнению с бензилпенициллинами менее активен при гонорее. Применяют в амбулаторной практике, как правило, у детей при лечении легких инфекций верхних дыхательных путей (тонзиллит, фарингит), полости рта, пневмококковой пневмонии.

Пенициллиназостабильные пенициллины

Спектр противомикробного действия этих препаратов сходен с природными пенициллинами, однако они уступают им в антимикробной активности. Единственным преимуществом является стабильность в отношении стафилококковых бета-лактамаз, в связи с чем эти полусинтетические пенициллины считаются препаратами выбора при лечении доказанной или предполагаемой стафилококковой инфекции (кожи и мягких тканей, костей и суставов, при эндокардите и абсцессе мозга). Метициллин в настоящее время не рекомендуется к использованию в клинической практике, так как у 2 - 10% больных приводит к развитию интерстициального нефрита. Оксациллин, не уступая в противомикробной активности метициллину, лучше переносится. При приеме оксациллина внутрь в крови создаются не очень высокие концентрации, поэтому его следует применять только парентерально, а для перорального применения предпочтительнее использовать клоксациллин или диклоксациллин. Прием пищи уменьшает всасывание этих препаратов, поэтому их предпочтительно принимать до еды. Оксациллин, клоксациллин и диклоксациллин выводятся с мочой и желчью, поэтому у больных с почечной недостаточностью не наблюдается существенного замедления выведения этих препаратов и их можно назначать в неизмененных дозах.

Аминопенициллины

Ампициллин и амоксициллин характеризуются одинаковым спектром антимикробной активности. Ампициллин применяется парентерально и внутрь, амоксициллин - только внутрь. Ампициллин плохо всасывается при приеме внутрь (биодоступность составляет 20 - 40%), в связи с чем в крови и тканях создаются не очень высокие концентрации; кроме того, прием пищи существенно уменьшает всасывание ампициллина. Амоксициллин значительно лучше всасывается (биодоступность составляет 80 - 70%) независимо от приема пищи, в крови и тканях создаются более высокие и стабильные концентрации.
Амоксициллин медленнее выводится из организма, поэтому требует более редкого дозирования (каждые 8 ч) по сравнению с ампициллином (каждые 6 ч). Кроме того, амоксициллин реже вызывает кишечный дисбактериоз и диарею. В связи с указанными преимуществами при назначении препарата внутрь для лечения нетяжелых инфекций предпочтительнее использовать амоксициллин.
Ампициллин применяется в основном парентерально при лечении острых неосложненных внебольничных инфекций дыхательных и мочевыводящих путей, в комбинации с аминогликозидами - при лечении серьезных инфекций, вызванных энтерококками (эндокардит, сепсис), менингококками, гемофильной палочкой и листериями (менингит). Внутрь ампициллин назначается при лечении бактериальной дизентерии.
Амоксициллин считается препаратом первого ряда в амбулаторной практике при лечении острых инфекций ЛОР-органов (синусит, средний отит), нижних дыхательных путей (острый бактериальный бронхит, внебольничная бактериальная пневмония), мочевыводящих путей (острый цистит, острый пиелонефрит, бессимптомная бактериурия), некоторых кишечных инфекций (брюшной тиф, сальмонеллез), а также при стоматологических вмешательствах в качестве профилактики бактериального эндокардита.
Аминопенициллины нецелесообразно назначать для лечения хронических или госпитальных инфекций дыхательных или мочевыводящих путей, так как отмечается увеличение частоты устойчивых штаммов микробов к этим препаратам. В этом случае предпочтительнее использовать комбинированные препараты аминопенициллинов с ингибиторами бета-лактамаз - ко-амоксиклав (амоксициллин + клавулановая кислота) или ампициллин + сульбактам.

Антисинегнойные пенициллины

В зависимости от химической структуры выделяют карбоксипенициллины (карбенициллин, тикарциллин) и уреидопенициллины (пиперациллин, азлоциллин, мезлоциллин). Антимикробная активность карбоксипенициллинов и уреидопенициллинов одинакова, за исключением Klebsiella spp. (более активны последние). Отличительной характеристикой антимикробного спектра этих пенициллинов является активность в отношении P. aeruginosa. По действию на синегнойную палочку эти препараты располагаются в следующем порядке:
азлоциллин = пиперациллин > мезлоциллин = тикарциллин > карбенициллин.

Основными показаниями для назначения карбоксипенициллинов и уреидопенициллинов являются тяжелые госпитальные инфекции различной локализации (дыхательных путей, мочевыводящих путей, интраабдоминальные, гинекологические), вызванные чувствительными микроорганизмами. Наиболее часто эти препараты (в комби


b-Лактамы были первыми антибиотиками, которые стали применяться в медицине, и по-существу они дали начало эпохе современной антибактериальной химиотерапии. Первым антибиотиком является бензилпенициллин, который стал использоваться в клинической практике в 1941 г. В конце 50-х годов были синтезированы первые полусинтетические пенициллины, в начале 60-х - цефалоспорины, в середине 80-х - карбапенемы.

За эти годы синтезировано более 70 антибиотиков этого класса, однако в настоящее время в медицине реально применяется около 30 препаратов. За более чем полувековую историю многие b-лактамы были исключены из практического применения, но оставшиеся сохраняют ведущие позиции во многих областях антимикробной химиотерапии, хотя их позиционирование при некоторых инфекционных заболеваниях изменилось. Однако до настоящего времени антибиотики этого класса являются наиболее часто назначаемыми как в амбулаторной практике, так и в стационаре. В настоящем обзоре представлен современный взгляд на место b-лактамных антибиотиков в антимикробной химиотерапии с акцентированием на особенности антимикробной активности и резистентности отдельных препаратов и указанием их преимущественного позиционирования в схемах лечения (средства выбора или 1-го ряда). Предпринята также попытка представить взвешенную сравнительную характеристику отдельных препаратов, сходных по спектру антимикробной активности.

b-Лактамы (b-лактамные антибиотики) включают большую группу лекарственных средств, имеющих b-лактамное кольцо. К ним относятся пенициллины, цефалоспорины, карбапенемы, монобактамы. Отдельную группу составляют комбинированные препараты, состоящие из b-лактамного антибиотика (пенициллины, цефалоспорины) и ингибитора b-лактамаз (клавулановая кислота, сульбактам, тазобактам) и получившие название "ингибиторозащищенные b-лактамы".

Антимикробная активность

b-Лактамы обладают широким спектром антимикробного действия, включающим грамположительные и грамотрицательные микроорганизмы. Природной устойчивостью к b-лактамам обладают микоплазмы. b-Лактамы не действуют на микроорганизмы, локализующиеся внутри клеток, в которые препараты плохо проникают (хламидии, риккетсии, легионеллы, бруцеллы и др.). Большинство b-лактамов не действует на анаэробы. Также устойчивы ко всем b-лактамам метициллин-резистентные стафилококки.

Данные о природной активности b-лактамов в отношении клинически значимых микроорганизмов и ориентировочные сведения об их приобретенной устойчивости к отдельным антибиотикам приведены в таблице.

Механизм действия и резистентность

Индивидуальные свойства отдельных b-лактамов определяются:

  • аффинностью (сродством) к пенициллинсвязывающим белкам (ПСБ);
  • способностью проникать через внешние структуры микроорганизмов;
  • устойчивостью к гидролизу b-лактамазами.

Мишенью действия b-лактамных антибиотиков в микробной клетке являются ПСБ, ферменты, участвующие в синтезе основного компонента наружной мембраны микроорганизмов (пептидогликан); связывание b-лактамов с ПСБ ведет к инактивации ПСБ, прекращению роста и последующей гибели микробной клетки.

b-Лактамы свободно проникают через капсулу и пептидогликан внутрь клетки грамположительных микроорганизмов. b-Лактамы не проходят через наружную мембрану грамотрицательных бактерий, и проникновение в клетку осуществляется через пориновые каналы внешней мембраны.

Доступ b-лактамных антибиотиков к ПСБ ограничивают ферменты - b-лактамазы, инактивирующие антибиотики. Созданы специальные вещества, предохраняющие b-лактамные антибиотики от разрушающего действия b-лактамаз (ингибиторы b-лактамаз). Лекарственные формы, в которых соединены антибиотики и ингибиторы b-лактамаз, получили название "ингибиторозащищенные b-лактамы".

Кроме природной чувствительности (или резистентности), клиническую эффективность b-лактамов определяет приобретенная устойчивость, механизмами которой могут быть:

  • снижение аффинности ПСБ к b-лактамам;
  • снижение проницаемости внешних структур микроорганизма для b-лактамов;
  • появление новых b-лактамаз или изменение экспрессии имеющихся.

Противопоказания и предостережения

Аллергические реакции

Противопоказаны b-лактамы только в случае документированной к ним гиперчувствительности. Аллергические реакции чаще отмечаются при применении пенициллинов (5-10%), реже - других b-лактамов (1-2% и менее). Имеется риск перекрестной аллергической реакции между b-лактамами: при аллергии в анамнезе на бензилпенициллин вероятность развития гиперчувствительности составляет к полусинтетическим пенициллинам около 10%, к цефалоспоринам 2-5%, к карбапенемам около 1%. При указании в анамнезе на тяжелые реакции гиперчувствительности к пенициллину (анафилактический шок, ангионевротический отек, бронхоспазм) применение других b-лактамов не допускается; при умеренных реакциях (крапивница, дерматит) возможно осторожное назначение цефалоспоринов и карбапенемов под прикрытием блокаторов Н1-гистаминовых рецепторов.

Беременность

При необходимости b-лактамы можно применять для лечения инфекций у беременных, так как у них не выявлено тератогенных, мутагенных или эмбриотоксических свойств.

Нарушение функции почек

Большинство b-лактамов не оказывает нефротоксического действия, они безопасны в терапевтических дозах, в частности у пациентов с заболеваниями почек. На фоне применения оксациллина в редких случаях возможно развитие интерстициального нефрита. Указания на нефротоксичность цефалоспоринов относятся исключительно к ранним препаратам (цефалоридин, цефалотин, цефапирин), которые уже не применяются.

Гепатотоксичность

Транзиторное повышение уровня трансаминаз и щелочной фосфатазы возможно при применении любых b-лактамов. Эти реакции проходят самостоятельно и не требуют отмены лекарственного средства (ЛС).

Реакции желудочно-кишечного тракта

Тошнота, рвота и диарея могут наблюдаться при применении всех b-лактамов. В редких случаях возможно развитие антибиотик-ассоциированной диареи, вызванной C. difficile.

Гематологические реакции

Применение некоторых цефалоспоринов и карбоксипенициллинов может привести к геморрагическому синдрому. Некоторые цефалоспорины (цефамандол, цефотетан, цефоперазон, цефметазол) обладают способностью вызывать гипопротромбинемию вследствие нарушения всасывания витамина К в кишечнике; реже наблюдаются кровотечения. К этой реакции предрасполагают недостаточность питания, почечная недостаточность, цирроз печени, злокачественные опухоли.

Карбенициллин и тикарциллин следует назначать с осторожностью перед операциями из-за возможности развития геморрагического синдрома, связанного с нарушением функции мембран тромбоцитов.

Нарушение толерантности к алкоголю

Дисульфирамподобные реакции при приеме алкоголя могут вызвать некоторые цефалоспорины (цефамандол, цефоперазон). Пациенты, получающие лечение этими антибиотиками, должны быть осведомлены о возможности такой реакции.

Природные пенициллины

Бензилпенициллин

Активен главным образом против грамположительных и грамотрицательных кокков: стафилококков (кроме продуцирующих пенициллиназу), стрептококков, пневмококков, E. faecalis (в меньшей степени), N. gonorrhoeae, N. meningitidis; проявляет высокую активность против анаэробов, C. diphtheriae, L. monocytogenes, T. pallidum, B. burgdorferi, Leptospira. По действию на кокковую флору превосходит другие пенициллины и цефалоспорины I-II поколения.

Приобретенная резистентность

В настоящее время большинство штаммов стафилококков (как внебольничных, так и госпитальных) продуцирует пенициллиназу и устойчивы к бензилпенициллину. Устойчивость пиогенного стрептококка к бензилпенициллину не документирована. Устойчивость пневмококков к бензилпенициллину в РФ составляет от 10 до 20% и увеличилась в последние годы. Клинически значима устойчивость гонококков, составляющая более 30%.

Основные показания

В неинфекционной клинике применение бензилпенициллина оправдано при стрептококковых и менингококковых инфекциях, а также газовой гангрене. При лечении бронхолегочных инфекций преимущество имеют полусинтетические пенициллины.

  • Инфекции, вызванные S. pyogenes (стрептококковый тонзиллит, скарлатина, рожа)
  • Инфекции, вызванные S. pneumoniae (внебольничная пневмония, менингит)
  • Инфекции, вызванные E. faecalis (в комбинации с гентамицином)
  • Лечение и профилактика клостридиальной инфекции (средство выбора)
  • Менингококковая инфекция (средство выбора)
  • Сифилис (средство выбора)
  • Лептоспироз
  • Актиномикоз
  • В качестве средства эмпирической терапии:
    • инфекционный эндокардит нативного клапана (в комбинации с гентамицином)
    • абсцедирующая пневмония (в комбинации с метронидазолом)

Дозирование

Применяется внутривенно и внутримышечно в суточной дозе от 6 млн ЕД (стрептококковые инфекции) до 24-30 млн ЕД (инфекции ЦНС).

Бензатинбензилпенициллин

Пролонгированная лекарственная форма бензилпенициллина.Антимикробная активность и резистентность - см. Бензилпенициллин

Особенности фармакокинетики

N,N-дибензилэтилендиаминовая соль бензилпенициллина - пролонгированная форма бензилпенициллина. При внутримышечном введении образует депо, из которого медленно (Тмакс достигается через 12-24 ч) высвобождается действующее начало - бензилпенициллин, который в низких концентрациях определяется в крови в течение длительного времени (до 3 нед). После внутримышечного введения в дозе 1,2 млн ЕД средние концентрации в крови через 1 нед составляют 0,1 мг/л, через 2 нед - 0,02 мг/л, через 3 нед - 0,01 мг/л.

Связь с белками плазы 40-60%.Выводится преимущественно почками.

Основные показания

  • Сифилис
  • Скарлатина (лечение и профилактика)
  • Профилактика ревматизма

Феноксиметилпенициллин

Особенности антимикробной активности

Спектр антимикробной активности сходен с бензилпенициллином. Преимущественная активность в отношении грамположительных (стафилококки, стрептококки) и грамотрицательных (N. gonorrhoeae, N. meningitidis) кокков, Treponema spp., H. influenzae, Cory-nebacterium spp.

Приобретенная резистентность - см. Бензилпенициллин

Основные показания

  • Стрептококковый тонзиллит у детей
  • Профилактика эндокардита при стоматологических процедурах
  • Скарлатина
  • Инфекции полости рта и десен

Пенициллиназостабильные пенициллины

Оксациллин

Особенности антимикробной активности

Активен главным образом в отношении грамположительных кокков (Staphylococcus spp., S. pyogenes, S. pneumoniae, S. viridans, S. agalactiae); не действует на энтерококки. По природной активности против грамположительных кокков уступает природным пенициллинам. Не проявляет активности в отношении грамотрицательных бактерий (кроме Neisseria spp.), анаэробов. Стабилен к стафилококковым b-лактамазам.

Приобретенная резистентность

Уровень устойчивости внебольничных штаммов S. aureus менее 5%, частота оксациллин-резистентных штаммов в стационарах варьирует между отделениями и в отделениях интенсивной терапии может достигать 50% и выше.

Основные показания

В настоящее время применение оксациллина целесообразно исключительно при стафилококковых инфекциях (в основном внебольничных).

  • Стафилококковые инфекции различной локализации (средство выбора)
  • Инфекции предполагаемой стафилококковой этиологии:
  • неосложненные инфекции кожи и мягких тканей (фурункул, карбункул, пиодермия и др.)
    • мастит
    • инфекционный эндокардит у внутривенных наркоманов (средство выбора)
    • острый гнойный артрит (средство выбора)
    • катетер-ассоциированная ангиогенная инфекция

Дозирование

Внутривенно, внутримышечно и внутрь; суточная доза 4-12 г (с интервалом 4-6 ч). Препарат предпочтительно назначать парентерально, так как биодоступность при приеме внутрь не очень высокая. Для перорального применения предпочтительнее использовать клоксациллин. При тяжелых инфекциях суточная доза составляет 8-12 г (в 4-6 введений).

Клоксациллин

Особенности антимикробной активности

Спектр антимикробной активности близок оксациллину (см.). Стабилен к стафилококковым b-лактамазам.

Приобретенная резистентность - см. Оксациллин

Основные показания

  • Стафилококковые инфекции различной локализации, легкие и средней тяжести
  • Инфекции предполагаемой стафилококковой этиологии:
    • неосложненные инфекции кожи и мягких тканей (фурункул, карбункул, пиодермия и др.)
    • острый мастит

Дозирование

Внутрь по 500 мг 4 раза в сутки

Аминопенициллины

Амоксициллин

Полусинтетический пенициллин широкого спектра для перорального применения.

Особенности антимикробной активности

Обладает широким спектром антмикробного действия. Наиболее активен в отношении грамположительных кокков (S. pyogenes, S. viridans, S. pneumoniae, чувствительных к пенициллину стафилококков), грамотрицательных кокков (N. gonorrhoeae, N. meningitidis), листерий, H. influenzae, грамположительных анаэробов, в меньшей степени - энтерококков, H. pylori, некоторых энтеробактерий (E. coli, P. mirabilis, Shigella spp., Salmonella spp.).

Приобретенная резистентность

Не стабилен к стафилококковым пенициллиназам, поэтому большинство штаммов S. aureus устойчиво. Устойчивость пневмококков и гемофильной палочки к амоксициллину в РФ незначительная, устойчивость E. faecalis составляет 10-15%. Устойчивость внебольничных штаммов энтеробактерий умеренная (10-30%), госпитальные штаммы обычно устойчивы.

Основные показания

В настоящее время рассматривается как средство выбора при неосложненных внебольничных респираторных инфекциях у взрослых и детей в амбулаторной практике; при этих заболеваниях не уступает по эффективности ингибиторозащищенным аминопенициллинам. Входит в основные схемы эрадикационной терапии при язвах желудка и двенадцатиперстной кишки.

  • Нетяжелые внебольничные инфекции верхних и нижних дыхательных путей:
    • пневмония (средство выбора)
    • острый средний отит (средство выбора)
    • острый синусит (средство выбора)
    • стрептококковый тонзиллит - ангина (средство выбора)
  • Кишечные инфекции (дизентерия, сальмонеллез)
  • В схемах эрадикации H. pylori
  • Профилактика эндокардита при стоматологических вмешательствах

Дозирование

Применяется внутрь (детям в виде суспензии). Кратность применения - 3 раза в сутки. Рекомендованная суточная доза у взрослых составляет 1,5 г. Профилактика эндокардита - 3 г однократно.

Особенности лекарственной формы: диспергированная лекарственная форма антибиотика (солютаб) характеризуется более полным всасыванием в ЖКТ по сравнению с обычными лекарственными формами в виде таблеток и капсул, что сопровождается созданием в крови более высоких сывороточных концентраций, а также меньшим влиянием препарата на кишечную микрофлору.

Ампициллин

Полусинтетический пенициллин широкого спектра для парентерального и перорального применения.

Особенности антимикробной активности

Спектр природной активности сходен с амоксициллином. Приобретенная резистентность - см. Амоксициллин

Основные показания

  • Инфекции, вызванные E. faecalis (средство выбора)
  • Менингит, вызванный листериями и гемофильной палочкой (в комбинации с аминогликозидами)
  • Инфекции нижних дыхательных путей:
  • Вторичный гнойный менингит у детей и пожилых (в комбинации с цефалоспоринами III поколения)
  • Кишечные инфекции (шигеллез, сальмонеллез)
  • Инфекционный эндокардит нативного клапана (в комбинации с гентамицином) (средство выбора)

Дозирование

Применяется парентерально и внутрь. Препарат характеризуется низкой биодоступностью при приеме внутрь, поэтому для перорального применения целесообразно использовать амоксициллин, за исключением кишечных инфекций.

Суточная доза при внутримышечном и внутривенном введении 4-12 г (с интервалом 4-6 ч): при респираторных инфекциях - 4 г/сут, при инфекциях ЦНС и эндокардите - 8-12 г/сут; внутрь (только при кишечных инфекциях) - по 0,5-1 г 4 раза в сутки.

Карбоксипенициллины

Карбенициллин

Антипсевдомонадный пенициллин широкого спектра.

Особенности антимикробной активности

Проявляет активность в отношении грамположительных и грамотрицательных микробов, включая стрептококки, пневмококки, нейссерии, листерии, грамположительные анаэробы (клостридии, пептострептококки), в меньшей степени - некоторых видов энтеробактерий, гемофильной палочки, синегнойной палочки (по антисинегнойной активности уступает другим антипсевдомонадным пенициллинам).

Приобретенная резистентность

Высокий уровень характерен для стафилококков, энтеробактерий, синегнойной палочки, в связи с чем применение ограничено случаями инфекций с документированной чувствительностью возбудителей к антибиотику.

Основные показания

Инфекции, вызванные чувствительными к карбенициллину штаммами P. aeruginosa (в комбинации с аминогликозидами или фторхинолонами).

Дозирование

Применяется в виде внутривенной инфузии в больших дозах (по 5 г 5-6 раз в сутки).

С осторожностью назначают при:

  • нарушении функции почек
  • кровотечениях в анамнезе
  • сердечно-сосудистой недостаточности
  • артериальной гипертензии

При сердечно-сосудистой или почечной недостаточности применение карбенициллина может вызвать гипернатриемию и гипокалиемию.

Уреидопенициллины

В эту группу входят пиперациллин, азлоциллин, мезлоциллин, но только азлоциллин сохраняет значение в медицинской практике.

Азлоциллин

Особенности антимикробной активности

Спектр антимикробной активности включает грамположительные и грамотрицательные микробы, а также анаэробы. В отношении бактерий семейства Еnterobacteriaceae более активен в отношении E. coli, P. mirabilis, P. vulgaris. Высокоактивен в отношении H. influenzae и N. gonorrhoeae. Относится к антисинегнойным пенициллинам, причем его активность превосходит карбенициллин.

Приобретенная резистентность

Не стабилен к стафилококковым пенициллиназам, поэтому большинство штаммов устойчиво. В настоящее время многие госпитальные штаммы грамотрицательных бактерий проявляют устойчивость к азлоциллину.

Основные показания

Инфекции, вызванные чувствительными к карбенициллину штаммами P. aeruginosa (в комбинации с аминогликозидами или фторхинолонами)

В настоящее время показания к применению карбенициллина ограничены в связи с высоким уровнем устойчивости микробов к препарату.

Дозирование

Применяется внутривенно (капельно, болюсно), внутримышечно. Стандартная доза для взрослых по 2 г 3 раза в сутки. При тяжелых инфекциях: разовая доза 4-5 г (даже 10 г).

С осторожностью назначают: в I триместре беременности; при кормлении грудью; при одновременном назначении гепатоксических ЛС и антикоагулянтов.

Ингибиторозащищенные пенициллины

Одним из методов борьбы с резистентностью микробов, связанной с выработкой ими b-лактамаз, является применение специальных веществ b-лактамного строения, которые связывают ферменты и тем самым предупреждают их разрушающее действие на b-лактамные антибиотики. Эти вещества получили название "ингибиторы b-лактамаз", а их комбинации с b-лактамными антибиотики - "ингибиторозащищенные b-лактамы".

В настоящее время применяются 3 ингибитора b-лактамаз:

  • Клавулановая кислота
  • Сульбактам
  • Тазобактам

Ингибиторы b-лактамаз самостоятельно не применяются, а используются только в комбинации с b-лактамами.

К ингибиторозащищенным пенициллинам относят: амоксициллин/клавуланат, ампициллин/ сульбактам, амоксициллин/сульбактам, пиперациллин/тазобактам, тикарциллин/клавуланат.

Эти антибиотики представляют собой фиксированные комбинации полусинтетических пенициллинов (аминопенициллинов, карбоксипенициллинов или уреидопенициллинов) с ингибиторами b-лактамаз, которые необратимо связывают различные b-лактамазы и таким образом защищают пенициллины от разрушения этими ферментами. В результате резистентные к пенициллинам штаммы микроорганизмов становятся чувствительными к комбинации данных ЛС с ингибиторами. Спектр природной активности ингибиторозащищенных b-лактамов соответствует содержащимся в их составе пенициллинам; различается только уровень приобретенной устойчивости.

Ингибиторозащищенные пенициллины широко применяются в клинической практике, причем амоксициллин/клавуланат, ампициллин/сульбактам и амоксициллин/сульбактам преимущественно при внебольничных инфекциях, а тикарциллин/клавуланат и пиперациллин/тазобактам - при госпитальных.

Амоксициллин/клавуланат

Особенности антимикробной активности

Клавулановая кислота предупреждает ферментативную инактивацию амоксициллина при действии b-лактамаз.

Активен в отношении грамположительных (стрептококки, пневмококки, стафилококки, кроме оксациллин-резистентных) и грамотрицательных (N. gonorrhoeae, N. meningitidis) кокков, листерий, H. influenzae, M. catarrhalis, анаэробов (включая B. fragilis), менее активен против энтерококков и некоторых энтеробактерий (E. coli, P. mirabilis, Klebsiella spp.).

Приобретенная резистентность

Большинство внебольничных штаммов S. aureus чувствительно. Устойчивость S. pneumoniae, H. influenzae в РФ незначительна. В последние годы наблюдается рост устойчивости внебольничных уропатогенных штаммов E. coli, составляющий в настоящее время около 30%. Устойчивость грамотрицательных бактерий кишечной группы варьирует - внебольничные штаммы, как правило, чувствительны, а госпитальные - часто устойчивы.

Основные показания

Наиболее хорошо изучен среди ингибиторозащищенных аминопенициллинов в контролируемых клинических исследованиях и поэтому имеет наиболее широкие показания.

  • Внебольничные инфекции верхних и нижних дыхательных путей:
    • пневмония легкого и среднетяжелого течения
    • пневмония деструктивная и абсцедирующая (средство выбора)
    • обострение хронического бронхита (средство выбора)
    • острый средний отит
    • острый синусит
    • обострение хронического синусита (средство выбора)
    • рецидивирующий тонзиллофарингит (средство выбора)
    • эпиглоттит (средство выбора)
  • Неосложненные инфекции кожи и мягких тканей
  • Внебольничные интраабдоминальные инфекции (средство выбора)
  • Внебольничные гинекологические инфекции органов малого таза (в комбинации с доксициклином):
    • эндометрит
    • сальпингоофорит
  • Раны после укусов животных (средство выбора)
  • Профилактика в абдоминальной хирургии и акушерстве-гинекологии (средство выбора)

Дозирование

Внутрь 375-625 мг 3 раза в сутки или 1 г 2 раза в сутки, внутривенно 1,2 г 3 раза в сутки. Профилактика в хирургии: внутривенно 1,2 г за 30-60 мин до операции.

Особенности лекарственной формы: диспергированная лекарственная форма антибиотика (солютаб) характеризуется более равномерным всасыванием в ЖКТ по сравнению с обычными лекарственными формами препарата, что обеспечивает более стабильные терапевтические концентрации амоксициллина и клавулановой кислоты в крови. В результате увеличения биодоступности клавулановой кислоты снижается частота желудочно-кишечных побочных эффектов.

Ампициллин/сульбактам

Особенности антимикробной активности

Активен в отношении грамположительных (стрептококки, стафилококки, кроме оксациллин-резистентных) и грамотрицательных (N. gonorrhoeae, N. meningitidis) кокков, листерий, H. influenzae, M. catarrhalis, анаэробов (включая B. fragilis), менее активен против энтерококков и некоторых энтеробактерий (E. coli, P. mirabilis, Klebsiella spp.).

Приобретенная резистентность - см. Амоксициллин/клавуланат

Основные показания

  • Инфекции кожи и мягких тканей
  • Внебольничные интраабдоминальные инфекции
  • Внебольничные гинекологические инфекции
  • Внебольничная деструктивная или абсцедирующая пневмония
  • Профилактика в абдоминальной хирургии и акушерстве-гинекологии

При инфекциях верхних дыхательных путей и пневмонии целесообразнее назначать амоксициллин/клавуланат.

Дозирование

Внутривенно 1,5-3 г 4 раза в сутки, внутрь 375-750 мг 2 раза в сутки.Профилактика в хирургии: внутривенно 3 г за 30-60 мин до операции

Амоксициллин/сульбактам

Особенности антимикробной активности и резистентности - см. Ампициллин/сульбактам.

Основные показания

Менее изучен, чем амоксициллин/клавуланат. Назначение возможно при внебольничных респираторных инфекциях и неосложненных инфекциях кожи и мягких тканей, абдоминальных инфекциях.

Дозирование

Внутрь по 0,5 г 3 раза в сутки, внутривенно или внутримышечно по 1 г 3 раза в сутки (расчет по амоксициллину).

Тикарциллин/клавуланат

Комбинация антисинегнойного карбоксипенициллина тикарциллина и ингибитора b-лактамаз клавуланата.

Особенности антимикробной активности

Клавулановая кислота предупреждает ферментативную инактивацию тикарциллина при действии b-лактамаз. Активен в отношении грамположительных (стрептококки, чувствительные к пенициллину пневмококки, оксациллин-чувствительные стафилококки) и грамотрицательных (N. gonorrhoeae, N. meningitidis) кокков, листерий, H. influenzae, M. catarrhalis, анаэробов (включая B. fragilis), P. aeruginosa, некоторых видов Enterobacteriaceae.

Приобретенная резистентность

Широко распространена у госпитальных штаммов Enterobacteriaceae и P. aeruginosa.

Основные показания

Внебольничные и нетяжелые госпитальные инфекции (аэробно-анаэробные) вне отделений интенсивной терапии:

  • легочные - абсцесс, эмпиема
  • интраабдоминальные, малого таза

Дозирование

Внутривенно (инфузия) взрослым по 3,2 г 3-4 раза в сутки.

Цефалоспорины

Все цефалоспорины являются производными 7-аминоцефалоспорановой кислоты.

В зависимости от спектра антимикробной активности цефалоспорины разделяют на 4 поколения (генерации).

Цефалоспорины I поколения активны преимущественно против грамположительных микроорганизмов (стафилококки, стрептококки, пневмококки). Некоторые грамотрицательные энтеробактерии (E. coli, P. mirabilis) природно чувствительны к цефалоспоринам I поколения, но приобретенная устойчивость к ним высокая. Препараты легко подвергаются гидролизу b-лактамазами. Спектр пероральных и парентеральных цефалоспоринов одинаковый, хотя активность немного выше у парентеральных средств, среди которых наиболее активен цефазолин.

Цефалоспорины II поколения более активны в отношении грамотрицательных бактерий по сравнению с цефалоспоринами I поколения и более устойчивы к действию b-лактамаз (цефуроксим более стабилен, чем цефамандол). Препараты сохраняют высокую активность в отношении грамположительных бактерий.

Пероральные и парентеральные средства по уровню активности существенно не различаются. Один препарат - цефокситин - активен в отношении анаэробных микроорганизмов.

Цефалоспорины III поколения преимущественно активны в отношении грамотрицательных микроорганизмов и стрептококков/пневмококков. Антистафилококковая активность невысокая. Антипсевдомонадные цефалоспорины III поколения (цефтазидим, цефоперазон) активны в отношении P. aeruginosa и некоторых других неферментирующих микроорганизмов. Цефалоспорины III поколения обладают более высокой стабильностью к b-лактамазам, но разрушаются b-лактамазами расширенного спектра и хромосомными b-лактамазами класса С (AmpC).

Цефалоспорины IV поколения сочетают высокую активность цефалоспоринов I-II поколения в отношении стафилококков и цефалоспоринов III поколения - в отношении грамотрицательных микроорганизмов. В настоящее время цефалоспорины IV поколения (цефепим) имеют наиболее широкий спектр антимикробной активности среди цефалоспориновых антибиотиков. Цефалоспорины IV поколения в некоторых случаях проявляют активность в отношении тех штаммов Enterobacteriaceae, которые устойчивы к цефалоспоринам III поколения.

Цефепим полностью устойчив к гидролизу AmpC b-лактамазами и частично противостоит гидролизу плазмидными b-лактамазами расширенного спектра, проявляет высокую активность в отношении P. aeruginosa (сравнимую с цефтазидимом).

Таким образом, у цефалоспоринов от I к IV поколению увеличивается активность в отношении грамотрицательных бактерий и пневмококков и немного снижается активность в отношении стафилококков от I к III поколению; от I к IV поколению увеличивается устойчивость к действию b-лактамаз грамотрицательных бактерий.

Все цефалоспорины практически лишены активности против энтерококков, малоактивны против грамположительных анаэробов и слабо активны против грамотрицательных анаэробов.

Бета-лактамазы (β-лактамазы) — это группа бактериальных ферментов, которые способны разрывать бета-лактамне кольцо некоторых антибиотиков (пенициллины, цефалоспорины, карбапенемов и монобактамами), относящихся к классу бета-лактамов.

Структура и свойства бета-лактамаз

Бета-лактамазы синтезируются в основном грамположительными бактериями (Bacillus, клостридии, стафилококки и другие), а также деякимим грам-отрицательными (Proteus, Citrobacter, Enterobacter, Serratia, Pseudomonas aeruginosa, Moraxella catarrhalis, Haemophilus influenzae), за счет чего эти бактерии получают механизм резистентности к данным группам антибиотиков. Бета-лактамазы различаются по своей молекулярной массе, электрохимических свойствах, последовательностью аминокислот и молекулярной структурой, или местом синтеза — в хромосомах или плазмидах. Гены, кодирующие синтез бета-лактамаз находятся в бактериальных хромосомах, или их R-плазмиды и могут передаваться другим бактериям путем трансдукции или трансформации. Впервые бета-лактамазы были обнаружены еще в 1940 году при исследовании штаммов Escherichia coli, которые обладали способностью разрушать молекулу пенициллина, но широкого распространения информация об этих ферменты приобрела в 80-х годах ХХ века, когда в Аргентине, а позже в Германии были обнаружены штаммы Klebsiella pneumoniae, которые обладали способностью инактивировать цефотаксим — первый цефалоспориновий антибиотик расширенного спектра действия — всего через год после введения этого препарата в широкую клиническую практику. Часть грамотрицательных бактерий, например клебсиелла, имеют естественную устойчивость к бета-лактамным антибиотикам (в результате выработки большого количества хромосомных бета-лактамаз), но большинство бактерий имеют приобретенную устойчивость к бета-лактамным соединений вследствие синтеза плазмидных бета-лактамаз, которые особенно распространены среди семейства Enterobacteriaceae и распространились он них на другие возбудители, в том числе синегнойная палочка, гонококки и Vibrio cholerae. Выработку бета-лактамаз бактериями может быть как генетически обусловленное, так и обусловлена ​​конституционными факторами микроорганизмов, связанных с переносом генетической информации плазмиды, а также индуцированным под воздействием на микроорганизмы антибиотиков. За последние десятилетия в мире распространяются, в основном в отделениях интенсивной терапии и хирургических стационарах, штаммы микроорганизмов, вырабатывающие бета-лактамазы расширенного спектра, которые нечувствительны ко всем представителям групп пенициллина и цефалоспоринов, и нечувствительные к другим группам антибиотиков (фторхинолонов, аминогликозидов) с сохраненной чувствительностью только к карбапенемов.

Классификация

Бета-лактамазы делятся по классам согласно функциональных свойств и молекулярного строения. Согласно функциональной классификации по Ричмонда и Сайксу, бета-лактамазы делятся на 5 типов в зависимости от их воздействия на различные типы антибиотиков. К I типа относятся ферменты, которые расщепляют цефалоспорины, к II типа — пенициллины, в III и IV типов — розщеплююють бета-лактамы широкого спектра действия, к V типа — ферменты, которые расщепляют изоксазолилпеницилины. Согласно другой функциональной классификации (по Бушу), бета-лактамазы делятся на 4 группы и дополнительно 8 подгрупп. В группу 1 относятся цефалоспориназы, которые малочувствительны к клавулановой кислоты, и производятся частью грамотрицательных бактерий к подгруппе 2а относятся пенициллиназы, производимых грамположительными бактериями (преимущественно стафилококками) к подгруппе 2b относятся бета-лактамазы широкого спектра действия, которые производятся преимущественно бактериями семейства Enterobacteriaceae; к подгруппе 2be относятся бета-лактамазы расширенного спектра, которые синтезируются клебсиелла, Proteus и Escherichia coli; к подгруппе 2br относятся бета-лактамазы широкого спектра и ингибиторостийки, производимых Escherichia coli; к подгруппе 2с относятся карбеницилазы, продуцируемых грамотрицательными бактериями к подгруппе 2d относятся оксацилиназы, производимых Pseudomonas aeruginosa; к подгруппе 2e относятся цефалоспориназы, производимых Citrobacter diversus, Proteus vulgaris, Bacteroides и Stenotrophomonas maltophila; к подгруппе 2f относятся карбапенемазы без содержания молекулы цинка, продуцируемых Serratia marcescens; к группе 3 относятся цинксодержащие карбапенемазы, которые производятся Stenotrophomonas maltophila, синегнойной палочкой, частью видов Acinetobacter и Bacteroides; к группе 4 относятся пенициллиназы, производимых Burkholderia sepacia. Согласно структурной классификации, бета-лактамазы делятся на 4 молекулярные классы. К классу А относится большинство плазмидных бета-лактамаз, а также часть хромосомных β-лактамаз грамотрицательных бактерий (производятся клебсиелла, Citrobacter diversus, Proteus vulgaris и в большинстве рода Bacteroides spp.). К классу В относятся хромосомные цинксодержащие бета-лактамазы грамотрицательных бактерий, которые обладают способностью ингибировать большинство бета-лактамным антибиотикам, включая карбапенемами. К классу С относятся хромосомные бета-лактамазы, к которым чувствительны большинство природных и синтетических производных пенициллина, а также цефалоспорины I-III поколений. К классу D относятся плазмидные β-лактамазы части грамотрицательных бактерий (преимущественно Pseudomonas aeruginosa).

Ингибиторы бета-лактамаз

Для борьбы с бета-лактамаз и защиты антибиотиков от их действия, используют специфические ингибиторы. Ингибиторы бета-лактамаз можно разделить на две группы. В первую из них входят бета-лактамные антибиотики, устойчивые к действию бета-лактамаз — метициллин и другие пеницилиназостийки антибиотики группы пенициллина, и карбапенемы. К другой группе относятся производные бета-лактамных антибиотиков, которые обладают способностью необратимо связываться с бета-лактамаз, инактивируя бактериальный фермент. Во время этого процесса ингибиторы бета-лактамаз разрушаются, в связи с чем получили название «суицидальных» ингибиторов бета-лактамаз. К этой группе относятся препараты, которые давно используются в клинической практике — клавулановая кислота, сульбактам, тазобактам и новый препарат релебактам.

Бета-лактамные антибиотики – это противомикробные средства, которые объединяют 4 группы антибиотиков различных по происхождению и спектру противомикробной активности, но объединённые по одному общему признаку – содержание бета-лактамного кольца в молекулярной формуле.

К группе бета-лактамов относятся пенициллиновые антибиотики, цефалоспорины, карбапенемы и мнобактамы.

Схожая химическая структура определяет общий механизм антибактериального действия, который заключается в нарушении процесса синтеза мурена – основного строительного компонента мембраны прокариот.

Не исключается развитие перекрёстной аллергии или приобретенной устойчивости у бактерий из-за общего структурного компонента.

Отмечено, что лактамное кольцо обладает высокой чувствительностью к разрушительному воздействию белков бета-лактамазы. Каждый из представителей 4 классов характеризуется своей степенью устойчивости и может существенно отличаться у природных и полусинтетических представителей.

В настоящее время лактамные антибиотики являются одной наиболее часто применяемых групп антибиотиков и используются повсеместно для медикаментозной терапии обширного перечня заболеваний.

Общая классификация бета-лактамных антибиотиков:

  1. Пенициллины:
  2. Цефалоспорины, 5 поколений.
  3. Карбапенемы.
  4. Монобактамы.

Полный перечень

Пенициллины

Природные бензилпенициллин ®
Феноксиметилпенициллин ®
Бензатин феноксиметилпенициллин ®
Полусинтетические Антистаилококковые оксациллин ®
Аминопенициллины

(расширенного спектра)

ампициллин ®
амоксициллин ®
Карбоксипенициллины

(антисинегнойные)

карбенициллин ®
тикарциллин ®
Уреидопенициллины азлоциллин ®
мезлоциллин ®
пиперациллин ®
Ингибиторозащищенные
Комбинированные

Цефалоспорины

1 поколение Инъекционные цефалотин ®
цефалоридин ®
цефазолин ®
Пероральные цефалексин ®
цефадроксил ®
цефрадин ®
2 поколение Инъекционные цефуроксим ®
цефамандол ®
цефокситин ®
цефотетан ®
цефметазол ®
Пероральные цефаклор ®
цефуроксим-аксетил ®
3 поколение Инъекционнные цефотаксим ®
цефтриаксон ®
цефодизим ®
цефтизоксим ®
цефоперазон ®
цефпирамид ®
цефтазидим ®
цефоперазон/сульбактам ®
Пероральные цефиксим ®
цефдиторен
цефподоксим ®
цефтибутен ®
4 поколение Инъекционные цефпиром ®
цефепим ®
5 поколение Инъекционные цефтобипрол ®
цефтаролин ®
цефтолозан ®

Карбапенемы

Инфузии и внутримышечно имипенем ®
меропенем ®

Монобактамы

Инфузии азтреонам ®

Инструкции на большинство данных препаратов есть на сайте в разделе « «.

Пенициллины

Пенициллины – первые противомикробные вещества, которые были случайно открыты Александром Флемингом и произвели революцию в мире медицины. Природным продуцентом являются грибы Пенициллы. При достижении минимально ингибирующей концентрации бета-лактамные антибиотики обладают бактерицидной активностью (уничтожают патогенные микроорганизмы). Пенициллин малотоксичен для млекопитающих, так как у них отсутствует основная мишень для воздействия – пептидогликан (муреин ®). Однако возможна индивидуальная непереносимость к препарату и развитие аллергической реакции.

Из-за частого применения пенициллинов микроорганизмы выработали системы защиты от антибактериального воздействия бета-лактамов:

  • активный синтез бета-лактамаз;
  • перестройка белков пептидогликана.

Поэтому учёные модифицировали химическую формулу вещества и в XXI веке большое распространение приобрели полусинтетические пенициллины, губительные для большого числа грамположительных и грамотрицательных бактерий.

История открытия

Британский бактериолог А. Флеминг, как он сам позже признался, не планировал совершать революцию в медицине открытием антибиотиков. Однако ему это удалось, причём совершенно случайно. Но, как известно – удача одаривает только подготовленные умы, которым он и являлся. К 1928 году он уже успел зарекомендовать себя как грамотный микробиолог и проводил всестороннее изучение бактерий семейства Staphylococcaceae. Однако пристрастием к идеальному порядку А. Флеминг не отличался.

Подготовив к убою чашки Петри с культурами стафилококков, он оставил их на своём столе в лаборатории и уехал на месяц в отпуск. По возвращению он обратил внимание, что в месте, где на чашку с потолка упала плесень, отсутствовал бактериальный рост. 28 сентября 1928 года было сделано величайшее открытие в истории медицины. Получить вещество в чистом виде удалось к 1940 году, совместными усилиями Флеминга, Флори и Чейна, за что они были удостоены Нобелевской премии.

Показания к применению пенициллинов

Пенициллины назначаются при широком спектре заболеваний:

  • гнойный ;
  • синуситы;
  • отиты;
  • лечение хеликобактерной инфекции (амоксициллин);
  • сепсис;
  • менингококковые инфекции;
  • остеомиелит;
  • воспалительные процессы ;
  • дифтерия;
  • инфекции, передающиеся половым путем (сифилис, гонорея);
  • пиодермии;
  • инфекции органов малого таза (простатиты, аднекситы и т.д.);
  • и ( , скарлатина и т.д.);
  • злокачественный карбункул.

Противопоказания и побочные симптомы пенициллинов

Основным противопоказанием к применению пенициллинов является индивидуальная непереносимость и аллергии ко всем препаратам лактамным антимикробным лекарствам. Запрещается вводить в просвет между оболочкой спинного мозга и надкостницы людям с диагнозом – эпилепсия.

К побочным симптомам относят расстройства ЖКТ ( ) и ЦНС (слабость, сонливость, раздражительность), и полости рта, а также , возможны отёки.

Отмечено, что при соблюдении дозировки и продолжительности лечения побочные эффекты проявляются редко.

Важные особенности пенициллинов

Больным с патологиями функционирования почек и печени назначается исключительно, если польза от антибиотика значительно превышает возможные риски. При отсутствии облегчения симптомов заболевания спустя 48-72 часа после начала лечения рекомендуется назначение препаратов альтернативной группы.

Запрещается самолечение лактамными лекарствами из-за быстрых темпов развития устойчивости патогенных штаммов к ним.

Цефалоспорины

Наиболее обширная группа бета-лактамов, лидирующая по количеству медикаментозных средств. К настоящему моменту разработано 5 поколений лекарств. Каждое последующее поколение отличается большей резистентностью к лактамазам и расширенным списком противомикробной активности.

Особый интерес представляет 5 поколение, но многие из открытых препаратов ещё находятся на стадии предклинических и клинических испытаний. Предполагается, что они будут активны в отношении штамма золотистого стафилококка, устойчивого ко всем известным противомикробным средствам.

История открытия цефалоспоринов

Они открыты в 1948 году итальянским учёным Д. Бротзу, занимавшимся исследованием тифа. Он отметил, что в присутствии C. acremonium не наблюдается рост культуры S. typhi на чашке Петри. Позже вещество было получено в чистом виде и активно применяется во многих областях медицины и совершенствуется микробиологами и фармакологическими компаниями.

Показания к применению цефалоспоринов

Препараты назначаются врачом после выделения, идентификации возбудителя воспаления и определения чувствительности к антибиотикам. Недопустимо самолечение, это может привести к тяжёлым последствиям для организма человека и распространению неконтролируемой устойчивости бактерий. Цефалоспорины эффективны против стафилококковых и стрептококковых инфекциях дермы, костной ткани и суставов, в том числе MRSA (5 поколение цефалоспоринов), инфекциях респираторного тракта, менингитах, синуситах, тонзиллитах, отитах, интраабдоминальных инфекциях, инфекциях половых органов, ЗППП (заболеваниях, передающихся половым путем) и т.д.

Противопоказания и побочные симптомы цефалоспоринов

Противопоказания аналогичны пенициллинам. При этом частота проявления побочных эффектов ниже, чем в предыдущей группе. Отметки в анамнезе пациента об аллергии к пенициллинам служат предостережением для применения.

Перед применением инъекционных антибиотиков выполняют тест на аллергические реакции (аллергопробы).

Важные особенности

Ни одно из лекарств цефалоспоринов не совместимо с алкоголем. Нарушение этого правила может привести к острой и тяжелой интоксикации, поражению печени и нервной системы.

Не установлено корреляции между приёмом пищи и принятием препарата. Принимая лактамные антибиотики внутрь, рекомендуется запивать его большим количеством воды. Несмотря на то, что специальных исследований, направленных на установление безопасности цефалоспоринов для беременных не проводилось, тем не менее, его с успехом применяют для женщин в положении. При этом не отмечено каких-либо осложнений течения беременности и патологий у плода. Однако без назначения врача применять антибиотики запрещено.

Кормление грудью во время лечения прекращают, так как вещество проникает в грудное молоко.

Карбапенемы

Лидеры по степени невосприимчивости к действию лактамаз. Данный факт объясняет огромный список патогенных бактерий, для которых карбапенемы губительны. Исключение составляет фермент NDM-1, выявленный у культур E. coli и K. pneumoniae. Проявляют бактерицидность к представителям семейств Enterohacteriaceae и Staphylococcaceae, синегнойной палочке и многим анаэробным бактериям.

Токсичность не превышает допустимые нормы, а их фармокинетические параметры довольно высокие. Эффективность антимикробного вещества была установлена и подтверждена в ходе независимых исследований при терапии воспалений разной степени тяжести и места локализации. Механизм их действия, как у всех лактамов, направлен на ингибирование биосинтеза клеточной стенки бактерий.

История открытия карбапенемов

Спустя 40 лет с начала «эры пенициллина» учёные забили тревогу о растущих уровнях резистентности и активно начали работу по поиску новых антимикробных средств, одним из результатов которой стало открытие группы карбапенемов. Сначала открыли имипенем, который отвечал всем требованиям, предъявляемым к бактерицидным веществам. С момента его открытия в 1985 году уже более 26 млн пациентов им излечись. Карбапенемы не утратили своего значения и в настоящее время и нет такой области медицины, где они не применялись бы.

Показания

Средство показано для госпитализированных больных с инфекциями различных систем органов, при:

  • больничной пневмонии;
  • сепсисе;
  • менингитах;
  • лихорадке;
  • воспалениях оболочки сердца и мягких тканей;
  • инфекциях абдоминальной области;
  • остеомиелите.

Противопоказания и побочные симптомы карбапенемов

Безопасность вещества подтверждена многочисленными исследованиями. Частота проявления негативных симптомов (тошнота, рвота, сыпь, судорожные припадки, сонливость, боли в височной области, расстройство стула) менее 1,8 % от общего числа больных. Отрицательные явления купируются сразу же при отмене приёма лекарства. Известны единичные сообщения о снижении концентрации нейтрофилов в крови на фоне лечения карбапенемами.

Важные особенности карбапенемов

Антибиотики бета-лактамного ряда успешно применяются для эффективной терапии уже более 70 лет, тем не менее, необходимо строго соблюдать назначения врача и инструкцию по применению. Карбапенемы не совместимы с алкоголем и стоит ограничить его приём на 2 недели после медикаментозного лечения. Выявлена полная несовместимость с ганцикловиром. При сочетанном применении этих средств наблюдаются судороги.

Беременным и женщинам на грудном вскармливании назначается при патологиях, угрожающих жизни.

Монобактамы

Отличительная черта – отсутствие ароматического кольца, связанного с бета-лактамным кольцом. Подобное строение гарантирует им полную невосприимчивость к лактамазам. Обладают бактерицидной активностью по большей степени в отношении грамнегативных аэробных бактерий. Данный факт объясняется особенностями строения их клеточной стенки, которая заключается в более тонком слое пептидогликана при сопоставлении с грампозитивными микробами.

Важная особенность монобактамов – не вызывают перекрестной аллергии к другим лактамным антибиотикам. Поэтому их применение допустимо при индивидуальной непереносимости к другим лактамным антибиотикам.

Единственное лекарство, которое введено в медицинскую практику – азтреонам с ограниченным спектром активности. Азтреонам считается «молодым» антибиотиком, он был одобрен в 1986 году Министерством по санитарному надзору за качеством пищевых продуктов и медикаментов.

Показания монобактамов

Характеризуется узким спектром действия и относится к группе антибиотических препаратов, применяемых при воспалительных процессах, вызванными грамнегативными патогенными бактериями:

  • сепсис;
  • госпитальная и внебольничная пневмония;
  • инфекции мочевыводящих протоков, органов брюшной полости, дермы и мягких тканей.

С целью достижения максимального результата рекомендована сочетанная терапия с лекарствами, уничтожающими грампозитивные микробные клетки. Исключительно парентеральное введение.

Противопоказания и побочные симптомы монобактамов

Ограничением к назначению азтреонама является только индивидуальная непереносимость и аллергия.

Возможны нежелательные реакции со стороны организма, проявляющиеся в виде желтухи, дискомфорта абдоминальной области, спутанности сознания, нарушения сна, сыпи и тошноты. Как правило, все они исчезают при прекращении терапии. Любые, даже самые незначительные негативные реакции со стороны организма – это повод незамедлительно обратиться к врачу и скорректировать лечение.

Важные особенности монобактамов

Нежелательно назначение беременным, потому что безопасность монобактамов не исследовалась для данной категории людей. Известно, что вещество может диффундировать сквозь плаценту в кровоток плода. Допустима терапия женщинами на ГВ, уровень бактерицидного вещества в грудном молоке не превышает 1%.

Детям назначают в случаях, если другие лекарства не проявили своих терапевтических свойств. Побочные симптомы аналогичны таковым у взрослых. Обязательно нужно проводить коррекцию дозы со снижением активного компонента. Коррекция также необходима пожилым пациентам, так как работа почек у них уже замедлена и вещество в значительно меньшей степени выводится из организма.

С осторожностью и исключительно в случаях угрожающих жизни больного назначаются при патологии печени и почек.

На нашем сайте Вы можете познакомиться с большинством групп антибиотиков, полными списками входящих в них препаратов, классификациями, историей и прочей важной информацией. Для этого создан раздел « » в верхнем меню сайта.