Вогнуто-выпуклая линза. Линзы и их применение в работе со светом

Линзой называется оптическая деталь, ограниченная двумя преломляющими поверхностями, являющимися поверхностями тел вращения, причем одна из них может быть плоской. Обычно линзы бывают круглой формы, но могут также иметь прямоугольную, квадратную или какую-либо другую конфигурацию. Как правило, преломляющие поверхности линзы являются сферическими. Применяются также асферические поверхности, которые могут иметь форму поверхностей вращения эллипса, гиперболы, параболы и кривых высшего порядка. Кроме того, существуют линзы, поверхности которых представляют собой часть боковой поверхности цилиндра, называемые цилиндрическими. Применяются также торические линзы с поверхностями, имеющими различную кривизну по двум взаимно перпендикулярным направлениям.

В качестве, отдельных оптических деталей линзы почти не применяются в оптических системах за исключением простых луп и полевых линз (коллективов). Обычно они используются в различных сложных комбинациях, например, склеенных из двух или трех линз и наборов из ряда отдельных и склеенных линз.

В зависимости от форм различают собирательные (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих -- линзы, края которых толще середины. Следует отметить, что это верно, только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например, пузырек воздуха в воде -- двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием, а также апертурой. Для построения оптических приборов с исправленной оптической аберрацией (прежде всего -- хроматической, обусловленной дисперсией света, -- ахроматы и апохроматы) важны и иные свойства линз/их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления.

Виды линз

Собирательные:

1 -- двояковыпуклая

2 -- плоско-выпуклая

3 -- вогнуто-выпуклая (положительный мениск)

Рассеивающие:

4 -- двояковогнутая

5 -- плоско-вогнутая

6 -- выпукло-вогнутая (отрицательный мениск)

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине) или рассеивающей (утолщается к краям). Мениск, у которого радиусы поверхностей равны, имеет оптическую силу, равную нулю (применяется для коррекции дисперсии или как покровная линза). Так, линзы очков для близоруких -- как правило, отрицательные мениски. Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.


Основные элементы линзы

NN -- главная оптическая ось -- прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O -- оптический центр -- точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре).

Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись, а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса, или просто фокуса.

Если на линзу будет падать свет от очень удаленного источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под большим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется главным фокусом F", а расстояние от центра линзы до главного фокуса -- главным фокусным расстоянием.

Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым.


Сказанное о фокусе на главной оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на побочной или наклонной оптической оси, т. е. линии, проходящей через центр линзы под углом к главной оптической оси. Плоскость, перпендикулярная главной оптической оси, расположенная в главном фокусе линзы, называется главной фокальной плоскостью, а в сопряжённом фокусе -- просто фокальной плоскостью.

Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса -- передний и задний. Расположены они на оптической оси по обе стороны линзы.

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше (рис. 3.3.1).

Прямая, проходящая через центры кривизны O 1 и O 2 сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F , которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих - мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F" , которая расположена при пересечении побочной оси с фокальной плоскостью Ф , то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус (рис. 3.3.2). Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначается той же буквой F .

Основное свойство линз - способность давать изображения предметов . Изображения бывают прямыми и перевернутыми , действительными и мнимыми , у величенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Примеры таких построений представлены на рис. 3.3.3 и 3.3.4.

Следует обратить внимание на то, что некоторые из стандартных лучей, использованных на рис. 3.3.3 и 3.3.4 для построения изображений, не проходят через линзу. Эти лучи реально не участвуют в образовании изображения, но они могут быть использованы для построений.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы . Если расстояние от предмета до линзы обозначить через d , а расстояние от линзы до изображения через f , то формулу тонкой линзы можно записать в виде:

Величину D , обратную фокусному расстоянию. называют оптической силой линзы. Единицой измерения оптической силы является диоптрия (дптр). Диоптрия - оптическая сила линзы с фокусным расстоянием 1 м:

1 дптр = м -1 .

Формула тонкой линзы аналогична формуле сферического зеркала. Ее можно получить для параксиальных лучей из подобия треугольников на рис. 3.3.3 или 3.3.4.

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:

d > 0 и f > 0 - для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;

d < 0 и f < 0 - для мнимых источников и изображений.

Для случая, изображенного на рис. 3.3.3, имеем: F > 0 (линза собирающая), d = 3F > 0 (действительный предмет).

По формуле тонкой линзы получим: , следовательно, изображение действительное.

В случае, изображенном на рис. 3.3.4, F < 0 (линза рассеивающая), d = 2|F | > 0 (действительный предмет), , то есть изображение мнимое.

В зависимости от положения предмета по отношению к линзе изменяются линейные размеры изображения. Линейным увеличением линзы Γ называют отношение линейных размеров изображения h" и предмета h . Величине h" , как и в случае сферического зеркала, удобно приписывать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Величина h всегда считается положительной. Поэтому для прямых изображений Γ > 0, для перевернутых Γ < 0. Из подобия треугольников на рис. 3.3.3 и 3.3.4 легко получить формулу для линейного увеличения тонкой линзы:

В рассмотренном примере с собирающей линзой (рис. 3.3.3): d = 3F > 0, , следовательно, - изображение перевернутое и уменьшенное в 2 раза.

В примере с рассеивающей линзой (рис. 3.3.4): d = 2|F | > 0, ; следовательно, - изображение прямое и уменьшенное в 3 раза.

Оптическая сила D линзы зависит как от радиусов кривизны R 1 и R 2 ее сферических поверхностей, так и от показателя преломления n материала, из которого изготовлена линза. В курсах оптики доказывается следующая формула:

Радиус кривизны выпуклой поверхности считается положительным, вогнутой - отрицательным. Эта формула используется при изготовлении линз с заданной оптической силой.

Во многих оптических приборах свет последовательно проходит через две или несколько линз. Изображение предмета, даваемое первой линзой, служит предметом (действительным или мнимым) для второй линзы, которая строит второе изображение предмета. Это второе изображение также может быть действительным или мнимым. Расчет оптической системы из двух тонких линз сводится к двукратному применению формулы линзы, при этом расстояние d 2 от первого изображения до второй линзы следует положить равным величине l - f 1 , где l - расстояние между линзами. Рассчитанная по формуле линзы величина f 2 определяет положение второго изображения и его характер (f 2 > 0 - действительное изображение, f 2 < 0 - мнимое). Общее линейное увеличение Γ системы из двух линз равно произведению линейных увеличений обеих линз: Γ = Γ 1 · Γ 2 . Если предмет или его изображение находятся в бесконечности, то линейное увеличение утрачивает смысл, изменяются только угловые расстояния.

Частным случаем является телескопический ход лучей в системе из двух линз, когда и предмет, и второе изображение находятся на бесконечно больших расстояниях. Телескопический ход лучей реализуется в зрительных трубах - астрономической трубе Кеплера и земной трубе Галилея .

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них - сферическая и хроматическая аберрации. Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом . Специальный затвор позволяет открывать объектив на время экспозиции.

Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F (рис. 3.3.5). Это приводит к увеличению глубины резкости.

Рисунок 3.3.5.

Фотоаппарат

Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D ) на удаленном экране Э (рис. 3.3.6). Система линз K , называемая конденсором , предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O .

Линзой называется прозрачное тело, ограниченное двумя криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Линзы делятся на выпуклые и вогнутые.

Линзы, у которых середина толще, чем края, называются выпуклыми. Линзы, у которых середина тоньше, чем края, называются вогнутыми.

Если показатель преломления линзы больше, чем показатель преломления окружающей среды, то в выпуклой линзе параллельный пучок лучей после преломления преобразуется в сходящий пучок. Такие линзы называются собирающими (рис. 89, а). Если в линзе параллельный пучок преобразуется в расходящийся пучок, то эти линзы называются рассеивающими (рис. 89, б). Вогнутые линзы, у которых внешней средой служит воздух, являются рассеивающими.

O 1 , О 2 - геометрические центры сферических поверхностей, ограничивающих линзу. Прямая О 1 О 2 , соединяющая центры этих сферических поверхностей, называется главной оптической осью. Обычно рассматриваем тонкие линзы, у которых толщина мала по сравнению с радиусами кривизны ее поверхностей, поэтому точки C 1 и С 2 (вершины сегментов) лежат близко друг к другу, их можно заменить одной точкой О, называемой оптическим центром линзы (см. рис. 89а). Всякая прямая, проведенная через оптический центр линзы под углом к главной оптической оси, называется побочной оптической осью (А 1 A 2 B 1 B 2).

Если на собирающую линзу падает пучок лучей, параллельных главной оптической оси, то после преломления в линзе они собираются в одной точке F, которая называется главным фокусом линзы (рис. 90, а).

В фокусе рассеивающей линзы пересекаются продолжения лучей, которые до преломления были параллельны ее главной оптической оси (рис. 90, б). Фокус рассеивающей линзы мнимый. Главных фокусов - два; они расположены на главной оптической оси на одинаковом расстоянии от оптического центра линзы по разные стороны.

Величина, обратная фокусному расстоянию линзы, называется ее оптической силой . Оптическая сила линзы - D.

За единицу оптической силы линзы в СИ принимают диоптрию. Диоптрия - оптическая сила линзы, фокусное расстояние которой равно 1 м.

Оптическая сила собирающей линзы положительная, рассеивающей - отрицательная.

Плоскость, проходящая через главный фокус линзы перпендикулярно к главной оптической оси, называется фокальной (рис. 91). Пучок лучей, падающих на линзу параллельно какой-либо побочной оптической оси, собирается в точке пересечения этой оси с фокальной плоскостью.

Построение изображения точки и предмета в собирающей линзе.

Для построения изображения в линзе достаточно взять по два луча от каждой точки предмета и найти их точку пересечения после преломления в линзе. Удобно пользоваться лучами, ход которых после преломления в линзе известен. Так, луч, падающий на линзу параллельно главной оптической оси, после преломления в линзе проходит через главный фокус; луч, проходящий через оптический центр линзы, не преломляется; луч, проходящий через главный фокус линзы, после преломления идет параллельно главной оптической оси; луч, падающий на линзу параллельно побочной оптической оси, после преломления в линзе проходит через точку пересечения оси с фокальной плоскостью.

Пусть светящаяся точка S лежит на главной оптической оси.

Выбираем произвольно луч и параллельно ему проводим побочную оптическую ось (рис. 92). Через точку пересечения побочной оптической оси с фокальной плоскостью пройдет выбранный луч после преломления в линзе. Точка пересечения данного луча с главной оптической осью (второй луч) даст действительное изображение точки S - S`.

Рассмотрим построение изображения предмета в выпуклой линзе.

Пусть точка лежит вне главной оптической оси, тогда изображение S` можно построить с помощью любых двух лучей, приведенных на рис. 93.

Если предмет расположен в бесконечности, то лучи пересекутся в фокусе (рис. 94).

Если предмет расположен за точкой двойного фокуса, то изображение получится действительным, обратным, уменьшенным (фотоаппарат, глаз) (рис. 95).

Линза является оптической деталью, которая производится из прозрачного материала (оптического стекла или пластмассы) и имеет две преломляющие полированные поверхности (плоские или сферические). Возраст самой старой линзы, найденной археологами в Нимруде, составляет около 3000 лет.

Это говорит о том, что люди с очень древних времен интересовались оптикой и пытались создать с ее помощью различное оснащение, помогающее в повседневной жизни. Римские военные при помощи линз добывали огонь в походных условиях, а император Нерон использовал вогнутый изумруд как средство от своей близорукости.

Со временем оптика тесно интегрировалась в медицину, что позволило создавать такие устройства для коррекции зрения, как окуляры, очки и контактные линзы. Кроме того, сами линзы получили широкое распространение в различной высокоточной технике, которая позволила в корне изменить представления человека об окружающем его мире.

Что такое линза, какие она имеет свойства и особенности?

Любую линзу в разрезе можно представить, как две поставленные друг на друга призмы. В зависимости от того, какой стороной они соприкасаются друг с другом, будет различаться и оптическое действие линзы, а также ее вид (выпуклая или вогнутая).

Рассмотрим, что такое линза, более подробно. К примеру, если взять кусок обычного оконного стекла, грани которого параллельны, мы получим совершенно незначительное искажение видимого изображения. То есть, луч света входящий в стекло преломится, а после прохождения второй грани и попадания в воздух вернет прежнее значение угла с небольшим смещением, которое зависит от толщины стекла. Но если плоскости стекла будут находится под углом относительно друг друга (например, как в призме), то луч, вне зависимости от его угла, после попадания в данное стеклянное тело будет преломлен и выйдет в его основании. Это правило, позволяющее управлять световым потоком, лежит в основе всех линз. Стоит отметить, что все особенности линз и оптических приборов на их основе .

Какие существуют виды линз в физике?

Существует только два основных вида линз: вогнутые и выпуклые, также их называют рассеивающими и собирающими. Они позволяют разделить пучок света или наоборот сконцентрировать его в одной точке на определенном фокусном расстоянии.

Выпуклая линза имеет тонкие края и утолщенный центр, благодаря чему в разрезе
представляется как две соединенные основаниями призмы. Эта ее особенность позволяет собирать все лучи света, попадающие под разными углами, на одну точку в центре. Именно такими приспособлениями пользовались римляне для разжигания огня, поскольку сфокусированные лучи солнечного света позволяли создать на небольшом участке легко воспламеняемого предмета очень высокую температуру.

В каких приборах и для чего используются линзы?

С давних пор люди знали, что такое линза. Данная деталь использовалась в первых очках, которые появились в 1280-х годах в Италии. Позже были созданы подзорные трубы, телескопы, бинокли и многие другие устройства, которые состояли из множества различных линз и позволяли значительно расширить возможности человеческого глаза. На тех же принципах были построены и микроскопы, которые оказали значительное влияние на развитие всей науки в целом.

Первые телевизоры оснащались огромными линзами, которые увеличивали изображение
с миниатюрных экранов и давали возможность более детально рассмотреть картинку. Вся видео- и фототехника, начиная с самых первых устройств, оснащается линзами. Они устанавливаются в объектив для того, чтобы оператор или фотограф мог навести резкость или произвести приближение/отдаление изображения в кадре.

Большинство современных мобильных телефонов имеют камеры с автофокусировкой, в которых используются миниатюрные линзы, позволяющие получать четкие фотографии объектов, находящихся в паре сантиметров или в нескольких километрах от объектива устройства.

Не стоит забывать о современных космических телескопах (таких, как Хаббл) и лабораторных микроскопах, на которых также установлены высокоточные линзы. Данные приборы дают человечеству возможность увидеть то, что ранее было недоступно для нашего зрения. Благодаря им можно более детально изучить окружающий нас мир.

Что такое контактная линза и зачем она нужна?

Контактные линзы - это небольшие прозрачные линзы, изготавливаемые из мягких или
жестких материалов, которые предназначены для непосредственного ношения на глазу в целях коррекции зрения. Они были разработаны еще Леонардо Да Винчи в 1508 году, но изготовили их лишь в 1888 году. Изначально линзы производились только из твердых материалов, но со временем были синтезированы новые полимеры, которые позволили создать мягкие линзы, практически не ощутимые при ежедневном использовании.

Если вы хотите приобрести контактные линзы, тогда прочтите статью , чтобы больше узнать о данном приспособлении.

Все знают, что фотографический объектив состоит из оптических элементов. В большинстве фотографических объективов в качестве таких элементов используются линзы. Линзы в фотообъективе располагаются на главной оптической оси, образуя оптическую схему объектива.

Оптическая сферическая линза - это прозрачный однородный элемент, ограниченный двумя сферическими или одной сферической и другой плоской поверхностями.

В современных фотообъективах получили большое распространение, также, асферические линзы, форма поверхности которых отличается от сферы. В этом случае могут быть параболические, цилиндрические, торические, конические и другие криволинейные поверхности, а также поверхности вращения с осью симметрии.

Материалом для изготовления линз могут служить различные сорта оптического стекла, а также прозрачные пластмассы.

Все многообразие сферических линз можно свести к двум основным видам: Собирающие (или положительные, выпуклые) и Рассеивающие (или отрицательные, вогнутые). Собирающие линзы в центре толще, чем по краям, напротив Рассеивающие в центре тоньше, чем по краям.

В собирающих линзах проходящие через нее параллельные лучи фокусируются в одной точке за линзой. В рассеивающих линзах, проходящие через линзу лучи рассеиваются в стороны.


Илл. 1. Собирающая и рассеивающая линзы.

Только положительные линзы могут давать изображения предметов. В оптических системах дающих действительное изображение (в частности объективы) рассеивающие линзы могут быть использованы только вместе с собирательными.

По форме поперечного сечения различают шесть основных типов линз:

  1. двояковыпуклые собирающие линзы;
  2. плоско-выпуклые собирающие линзы;
  3. вогнуто-выпуклые собирающие линзы (мениски);
  4. двояковогнутые рассеивающие линзы;
  5. плоско-вогнутые рассеивающие линзы;
  6. выпукло-вогнутые рассеивающие линзы.

Илл. 2. Шесть типов сферических линз.

Сферические поверхности линзы могут иметь различную кривизну (степень выпуклости/вогнутости) и разную осевую толщину .

Давайте разберемся с этими и некоторыми другими понятиями, подробнее.

Илл. 3. Элементы двояковыпуклой линзы

На иллюстрации 3 можно увидеть схему формирования двояковыпуклой линзы.

  • С1 и С2 - центры ограничивающих линзу сферических поверхностей, они называются центрами кривизны .
  • R1 и R2 - радиусы сферических поверхностей линзы или радиусы кривизны .
  • Прямая соединяющая точки С1 и С2, называется главной оптической осью линзы.
  • Точки пересечения главной оптической оси с поверхностями линзы (A и B) называются вершинами линзы .
  • Расстояние от точки A до точки B называется осевой толщиной линзы .

Если из точки, лежащей на главной оптической оси, направить на линзу параллельный пучок лучей света, то пройдя через нее, они соберутся в точке F , которая, также находится на главной оптической оси. Эта точка называется главным фокусом линзы, а расстояние f от линзы до этой точки - главным фокусным расстоянием.

Илл. 4. Главный фокус, главная фокальная плоскость и фокусное расстояние линзы.

Плоскость MN перпендикулярная главной оптической оси и проходящая через главный фокус, называется главной фокальной плоскостью. Именно здесь располагается светочувствительная матрица или светочувствительная пленка.

Фокусное расстояние линзы напрямую зависит от кривизны ее выпуклых поверхностей: чем меньше радиусы кривизны (т.е. чем больше выпуклость) - тем короче фокусное расстояние.