Тело нейрона состоит из. Open Library - открытая библиотека учебной информации

Последнее обновление: 29/09/2013

Нейроны являются основными элементами нервной системы. А как устроен сам нейрон? Из каких элементов он состоит?

– это структурно-функциональные единицы мозга; специализированные клетки, выполняющие функцию обработки информации, которая поступает в мозг. Они отвечают за получение информации и передачу её по всему телу. Каждый элемент нейрона играет важную роль в этом процессе.

– древовидные расширения в начале нейронов, которые служат для увеличения площади поверхности клетки. У многих нейронов их большое количество (тем не менее, встречаются и такие, у которых есть только один дендрит). Эти крошечные выступы получают информацию от других нейронов и передают её в виде импульсов к телу нейрона (соме). Место контакта нервных клеток, через которое передаются импульсы – химическим или электрическим путём, – называется .

Характеристики дендритов:

  • Большинство нейронов имеют много дендритов
  • Тем не менее, некоторые нейроны могут иметь только один дендрит
  • Короткие и сильно разветвленные
  • Участвует в передаче информации в тело клетки

Сомой , или телом нейрона, называется место, где сигналы от дендритов аккумулируются и передаются дальше. Сома и ядро не играют активной роли в передаче нервных сигналов. Эти два образования служат скорее для поддержания жизнедеятельности нервной клетки и сохранения её работоспособности. Этой же цели служат митохондрии, которые обеспечивают клетки энергией, и аппарат Гольджи, который выводит продукты жизнедеятельности клеток за пределы клеточной мембраны.

– участок сомы, от которого отходит аксон, – контролирует передачу нейроном импульсов. Именно тогда, когда общий уровень сигналов превышает пороговое значение холмика, он посылает импульс (известный, как ) далее по аксону, к другой нервной клетке.

– это удлиненный отросток нейрона, который отвечает за передачу сигнала от одной клетки к другой. Чем больше аксон, тем быстрее он передаёт информацию. Некоторые аксоны покрыты специальным веществом (миелином), который выступает в качестве изолятора. Аксоны, покрытые миелиновой оболочкой, способны передавать информацию намного быстрее.

Характеристики Аксона:

  • У большинства нейронов имеется только один аксон
  • Участвует в передаче информации от тела клетки
  • Может или не может иметь миелиновую оболочку

Терминальные ветви

Она осуществляется по трём основным группам призна­ков: морфологическим, функциональным и биохимическим.

1. Морфологическая классификация нейронов (по особенностям строения). По количеству отростков ней­роны делятся на униполярные (с одним отростком), бипо­лярные (с двумя отростками) , псевдоуниполярные (ложно униполярные), мультиполярные (имеют три и более отрост­ков). (Рис. 8-2). Последних в нервной системе больше всего.

Рис. 8-2. Типы нервных клеток.

1. Униполярный ней­рон.

2. Псевдоуниполярный нейрон.

3. Биполярный нейрон.

4. Мультиполярный нейрон.

В цитоплазме нейронов видны нейрофибриллы.

(По Ю. А. Афанасьеву и др.).

Псевдоуниполярными нейроны называют потому, что отходя от тела, аксон и дендрит вначале плотно прилегают друг к другу, создавая впечатление одного отростка, и лишь потом Т-образно расходятся (к ним относятся все рецепторные нейроны спинальных и краниальных ганглиев). Униполярные нейроны встречаются только в эмбриогенезе. Биполярными нейронами являются биполярные клетки сетчатки глаза, спирального и вестибулярного ганглиев. По форме описано до 80 вариантовнейронов: звёздчатые, пирамидальные, гру­шевидные, веретеновидные, паукообразные и др.

2. Функциональная (в зависимости от выполняемой функции и места в рефлекторной дуге):рецепторные, эффек­торные, вставочные и секреторные. Рецепторные (чувстви­тельные, афферентные) нейроны с помощью дендритов вос­принимают воздействия внешней или внутренней среды, ге­нерируют нервный импульс и передают его другим типам нейронов. Они встречаются только в спинальных ганглиях и чувствительных ядрах черепномозговых нервов. Эффектор­ные (эфферентные) нейроны, передают возбуждение на ра­бочие органы (мышцы или железы). Они располагаются в передних рогах спинного мозга и вегетативных нервных ганглиях. Вставочные (ассоциативные) нейронырасполага­ются между рецепторными и эффекторными нейронами; по количеству их больше всего, особенно в ЦНС. Секреторные нейроны (нейросекреторные клетки) –это специализирован­ные нейроны, по своей функции напоминающие эндокринные клетки . Они синтезируют и выделяют в кровь нейрогор­моны, расположены в гипоталамической области головного мозга. Они регулируют деятельность гипофиза, а через него и многие периферические эндокринные железы.

3. Медиаторная (по химической природе выделяемого медиатора):

Холинергические нейроны (медиатор ацетилхолин);

Аминергические (медиаторы – биогенные амины, на­пример норадреналин, серотонин, гистамин);

ГАМКергические (медиатор – гаммааминомасляная кислота);

Аминокислотергические (медиаторы – аминокислоты, такие как глютамин, глицин, аспартат);

Пептидергические (медиаторы – пептиды, например опиоид­ные пептиды, субстанция Р, холецистокинин, и др.);

Пуринергические (медиаторы – пуриновые нуклео­тиды, например аденин) и др.

Внутреннее строение нейронов

Ядро нейрона обычно крупное, округлое, с мелкодис­персным хроматином, 1-3 крупными ядрышками. Это отра­жает высокую интенсивность процессов транскрипции в ядре нейрона.

Клеточная оболочка нейрона способна генерировать и проводить электрические импульсы. Это достигается изме­нением локальной проницаемости её ионных каналов для Na+ и К+, изменением электрического потенциала и быст­рым перемещением его по цитолемме (волна деполяризации, нервный импульс).

В цитоплазме нейронов хорошо развиты все органоиды общего назначения. Митохондрии многочисленны и обеспе­чивают высокие энергетические потребности нейрона, свя­занные со значительной активностью синтетических процес­сов, проведением нервных импульсов, работой ионных насо­сов. Они характеризуются быстрым изнашиванием и обнов­лением (рис 8-3). Комплекс Гольджи очень хорошо развит. Не случайно эта органелла впервые была описана и демонст­рируется в курсе цитологии именно в нейронах. При свето­вой микроскопии он выявляется в виде колечек, нитей, зёр­нышек, расположенных вокруг ядра (диктиосомы). Много­численные лизосомы обеспечивают постоянное интенсивное разрушение изнашиваемых компонентов цитоплазмы ней­рона (аутофагия).

Р
ис. 8-3. Ультрастук­турная орга­низация тела нейрона.

Д. Дендриты. А. Ак­сон.

1. Ядро (ядрышко показано стрелкой).

2. Митохондрии.

3. Комплекс Голь­джи.

4. Хроматофильная субстанция (уча­стки гранулярной цито­плаз­мотической сети).

5. Лизосомы.

6. Аксонный холмик.

7. Нейротру­бочки, нейрофиламенты.

(По В. Л. Быкову).

Для нормального функционирования и обновления структур нейрона в них должен быть хорошо развит бело­ксинтезирующий аппарат (рис. 8-3). Гранулярная цитоплаз­матическая сеть в цитоплазме нейронов образует скопле­ния, которые хорошо окрашиваются основными красителями и видны при световой микроскопии в виде глыбок хромато­фильного вещества (базофильное, или тигровое вещество, субстанция Ниссля). Термин субстанция Ниссля сохра­нился в честь учёного Франца Ниссля, впервые ее описав­шего. Глыбки хроматофильного вещества расположены в пе­рикарионах нейронов и дендритах, но никогда не встреча­ются в аксонах, где белоксинтезирующий аппарат развит слабо (рис. 8-3). При длительном раздражении или повреж­дении нейрона эти скопления гранулярной цитоплазматиче­ской сети распадаются на отдельные элементы, что на свето­оптическом уровне проявляется исчезновением субстанции Ниссля (хроматолиз , тигролиз).

Цитоскелет нейронов хорошо развит, образует трёх­мерную сеть, представленную нейрофиламентами (толщиной 6-10 нм) и нейротрубочками (диаметром 20-30 нм). Нейро­филаменты и нейротрубочки связаны друг с другом попереч­ными мостиками, при фиксации они склеиваются в пучки толщиной 0,5-0,3 мкм, которые окрашиваются солями се­ребра.На светооптическом уровне они описаны под назва­нием нейрофибрилл. Они образуют сеть в перикарионах нейроцитов, а в отростках лежат параллельно (рис. 8-2). Ци­тоскелет поддерживает форму клеток, а также обеспечивает транспортную функцию – участвует в транспорте веществ из перикариона в отростки (аксональный транспорт).

Включения в цитоплазме нейрона представлены липид­ными каплями, гранулами липофусцина – «пигмента старе­ния» – жёлто-бурого цвета липопротеидной природы. Они представляют собой остаточные тельца (телолизосомы) с продуктами непереваренных структур нейрона. По-види­мому, липофусцин может накапливаться и в молодом воз­расте, при интенсивном функционировании и повреждении нейронов. Кроме того, в цитоплазме нейронов черной суб­станции и голубого пятна ствола мозга имеются пигментные включения меланина . Во многих нейронах головного мозга встречаются включения гликогена .

Нейроны не способны к делению, и с возрастом их число постепенно уменьшается вследствие естественной ги­бели. При дегенеративных заболеваниях (болезнь Альцгей­мера, Гентингтона, паркинсонизм) интенсивность апоптоза возрастает и количество нейронов в определённых участках нервной системы резко уменьшается.

Человеческий организм представляет собой довольно сложную и сбалансированную систему, функционирующую в соответствии с четкими правилами. Причем внешне кажется, что все довольно просто, но на самом деле наш организм - это удивительное взаимодействие каждой клеточки и органа. Дирижирует всем этим "оркестром" нервная система, состоящая из нейронов. Сегодня мы расскажем, что такое нейроны и насколько важную роль они играют в теле человека. Ведь именно они отвечают за наше психическое и физическое здоровье.

Каждый школьник знает, что руководит нами мозг и нервная система. Эти два блока нашего организма представлены клетками, каждая из которых называется нервный нейрон. Данные клетки отвечают за принятие и передачу импульсов от нейрона к нейрону и другим клетками человеческих органов.

Чтобы лучше понять, что такое нейроны, их можно представить в виде самого важного элемента нервной системы, который выполняет не только проводящую роль, но и функциональную. Удивительно, но до сих пор нейрофизиологи продолжают изучать нейроны и их работу по передаче информации. Конечно, они добились больших успехов в своих научных изысканиях и сумели раскрыть множество тайн нашего организма, но до сих пор не могут раз и навсегда ответить на вопрос, что такое нейроны.

Нервные клетки: особенности

Нейроны являются клетками и во многом похожи на других своих "собратьев", из которых состоит наше тело. Но они имеют ряд особенностей. Благодаря своей структуре такие клетки в организме человека, соединяясь, создают нервный центр.

Нейрон имеет ядро и окружен защитной оболочкой. Это роднит его со всеми остальными клетками, но на этом сходство и заканчивается. Остальные характеристики нервной клетки делают ее действительно уникальной:

  • Нейроны не делятся

Нейроны мозга (головного и спинного) не делятся. Это удивительно, но они останавливаются в развитии практически сразу же после своего возникновения. Ученые считают, что некая клетка-предшественница заканчивает деление еще до полного развития нейрона. В дальнейшем он наращивает только связи, но не свое количество в организме. С этим фактом связывают множество болезней мозга и центральной нервной системы. С возрастом часть нейронов отмирает, а оставшиеся клетки, в связи с малой активностью самого человека, не могут наращивать связи и заменить своих "собратьев". Все это приводит к разбалансировке организма и в некоторых случаях - к смертельному исходу.

  • Нервные клетки передают информацию

Нейроны могут передавать и получать информацию с помощью отростков - дендритов и аксонов. Они способны воспринимать определенные данные с помощью химических реакций и преобразовывать ее в электрический импульс, который, в свою очередь, по синапсам (связям) переходит до нужных клеток организма.

Уникальность нервных клеток учеными доказана, но на самом деле они сейчас знают о нейронах всего лишь 20% из того, что те на самом деле скрывают. Потенциал нейронов еще не раскрыт, в научном мире бытует мнение о том, что раскрытие одной тайны функционирования нервных клеток становится началом другой тайны. И этот процесс в настоящий момент представляется бесконечным.

Сколько нейронов в организме?

Эта информация доподлинно неизвестна, но нейрофизиологи предполагают, что нервных клеток в теле человека более ста миллиардов. При этом одна клетка имеет возможность образовывать до десяти тысяч синапсов, позволяющих быстро и эффективно связываться с другими клетками и нейронами.

Строение нейронов

Каждая нервная клетка состоит из трех частей:

  • тело нейрона (сома);
  • дендриты;
  • аксоны.

До сих пор неизвестно, какие из отростков развиваются в теле клетки первыми, но распределение обязанностей между ними вполне очевидно. Отросток нейрона аксон обычно формируется в единственном экземпляре, а вот дендритов может быть очень много. Их количество иногда доходит до нескольких сотен, чем больше дендритов у нервной клетки, тем с большим количеством клеток она может быть связана. К тому же, разветвленная сеть отростков позволяет передавать массу информации в кратчайшие сроки.

Ученые считают, что до формирования отростков нейрон расселяется по телу, и с момента их появления находится уже на одном месте без изменения.

Передача информации нервными клетками

Чтобы понять, насколько важны нейроны, необходимо понять, каким образом они выполняют свою функцию по передаче информации. Импульсы нейронов способны передвигаться в химическом и электрическом виде. Отросток нейрона дендрит получает информацию в качестве раздражителя и передает ее в тело нейрона, аксон передает ее в качестве электронного импульса к другим клеткам. Дендриты другого нейрона воспринимают электронный импульс сразу же или с помощью нейромедиаторов (химических передатчиков). Нейромедиаторы захватываются нейронами и в дальнейшем используются как свои собственные.

Виды нейронов по количеству отростков

Ученые, наблюдая за работой нервных клеток, разработали несколько видов их классификации. Одна из них делит нейроны по количеству отростков:

  • униполярные;
  • псевдоуниполярные;
  • биполярные;
  • мультиполярные;
  • безаксонные.

Классическим считается нейрон мультиполярный, он имеет один короткий аксон и сеть дендритов. Самыми малоизученными являются безаксонные нервные клетки, ученые знают только их местоположение - спинной мозг.

Рефлекторная дуга: определение и краткая характеристика

В нейрофизике существует такой термин, как "нейроны рефлекторной дуги". Без него довольно сложно получить полное представление о работе и значении нервных клеток. Раздражители, влияющие на нервную систему, называются рефлексами. Это основная деятельность нашей ЦНС, осуществляется она с помощью рефлекторной дуги. Ее можно представить своеобразной дорогой, по которой проходит импульс от нейрона до осуществления действия (рефлекса).

Этот путь можно разделить на несколько этапов:

  • восприятие раздражения дендритами;
  • передача импульса в тело клетки;
  • трансформация информации в электрический импульс;
  • передача импульса в орган;
  • изменение деятельности органа (физическая реакция на раздражитель).

Рефлекторные дуги могут быть разными и состоять из нескольких нейронов. К примеру, простая рефлекторная дуга образуется из двух нервных клеток. Одна из них получает информацию, а другая заставляет органы человека совершать определенные действия. Обычно такие действия называют безусловным рефлексом. Он возникает, когда человека ударяют, например, по коленной чашечке, и в случае прикосновения к горячей поверхности.

В основном, простая рефлекторная дуга проводит импульсы через отростки спинного мозга, сложносоставная рефлекторная дуга проводит импульс непосредственно в головной мозг, который, в свою очередь, обрабатывает ее и может откладывать на хранение. В дальнейшем при получении схожего импульса мозг отправляет нужную команду к органам для совершения определенной совокупности действий.

Классификация нейронов по функционалу

Классифицировать нейроны можно по их непосредственному назначению, ведь каждая группа нервных клеток предназначена для определенных действий. Виды нейронов представлены следующим образом:

  1. Чувствительные

Данные нервные клетки предназначены для восприятия раздражения и трансформации его в импульс, перенаправляющийся в мозг.

Воспринимают информацию и передают импульс к мышцам, приводящим в движение части тела и органы человека.

3. Вставочные

Данные нейроны осуществляют сложную работу, они находятся в центре цепочки между чувствительными и двигательными нервными клетками. Подобные нейроны принимают информацию, проводят предварительную обработку и передают импульс-команду.

4. Секреторные

Секреторные нервные клетки синтезируют нейрогормоны и имеют особенное строение с большим количеством мембранных мешочков.

Двигательные нейроны: характеристика

Эфферентные нейроны (двигательные) имеют строение, идентичное другим нервным клеткам. Их сеть дендритов является наиболее разветвленной, а аксоны протягиваются к мышечным волокнам. Они заставляют мышцу сокращаться и распрямляться. Самым длинным в теле человека как раз является аксон двигательного нейрона, идущий до большого пальца ноги от поясничного отдела. В среднем его длина составляет около одного метра.

Практически все эфферентные нейроны располагаются в спинном мозге, ведь именно он отвечает за большинство наших бессознательных движений. Это касается не только безусловных рефлексов (к примеру, моргания), но и любых действий, о которых мы не задумываемся. Когда мы всматриваемся в какой-то предмет, то импульсы посылает к глазному нерву головной мозг. А вот передвижение глазного яблока влево и вправо осуществляется посредством команд спинного мозга, это бессознательные движения. Поэтому с течением возраста, когда увеличивается совокупность бессознательных привычных действий, важность двигательных нейронов представляется в новом свете.

Виды двигательных нейронов

В свою очередь, эфферентные клетки имеют определенную классификацию. Они делятся на два следующих вида:

  • а-мотонейроны;
  • у-мотонейроны.

Первый вид нейронов имеет более плотную структуру волокна и присоединяется к различным мышечным волокнам. Один такой нейрон может задействовать различное количество мышц.

У-мотонейроны немного слабее своих "собратьев", они не могут задействовать несколько мышечных волокон одновременно и отвечают за натяжение мышцы. Можно сказать, что оба вида нейронов являются контролирующим органом двигательной активности.

К каким мышцам присоединяются двигательные нейроны?

Аксоны нейронов связаны с несколькими видами мышц (они являются рабочими), которые классифицируются как:

  • анимальные;
  • вегетативные.

Первая группа мышц представлена скелетными, а вторая относится к категории гладких мышц. Разными являются и способы прикрепления к мышечному волокну. Скелетные мышцы в месте соприкосновения с нейронами образуют своеобразные бляшки. Вегетативные нейроны связываются с гладкими мышцами посредством небольших вздутий или пузырьков.

Заключение

Невозможно представить, как функционировал бы наш организм в отсутствие нервных клеток. Они ежесекундно выполняют невероятно сложную работу, отвечая за наше эмоциональное состояние, вкусовые пристрастия и физическую активность. Многие свои тайны нейроны еще не раскрывают. Ведь даже самая простая теория о невосстановлении нейронов у некоторых ученых вызывает множество споров и вопросов. Они готовы доказать, что в некоторых случаях нервные клетки способны не только образовывать новые связи, но и самовоспроизводиться. Конечно, пока это всего лишь теория, но она вполне может оказаться жизнеспособной.

Работа по изучению функционирования центральной нервной системы крайне важна. Ведь благодаря открытиям в этой области фармацевты смогут разрабатывать новые препараты для активации деятельности головного мозга, а психиатры будут лучше понимать природу многих заболеваний, которые сейчас кажутся неизлечимыми.

Функции нейрона

Свойства нейрона

Основные закономерности проведения возбуждения по нервным волокнам

Проводниковая функция нейрона.

Морфофункциональные свойства нейрона.

Строение и физиологические функции мембраны нейрона

Классификация нейронов

Строение нейрона и его функциональные части.

Свойства и функции нейрона

· высокая химическая и электрическая возбудимость

· способность к самовозбуждению

· высокая лабильность

· высокий уровень энергообмена. Нейрон не прибывает в состоянии покоя.

· низкая способность к регенерации (рост нейритов всего лишь 1 мм в сутки)

· способность к синтезу и секреции химических веществ

· высокая чувствительность к гипоксии, ядам, фармакологическим препаратам.

· воспринимающая

· передающая

· интегрирующая

· проводниковая

· мнестическая

Структурной и функциональной единицей нервной системы является нервная клетка – нейрон. Количество нейронов в нервной системе составляет примерно10 11 . На одном нейроне может быть до 10000 синапсов. Если только синапсы считать ячейками хранения информации, то можно заключить, что нервная система человека может хранить 10 19 ед. информации, т. е. способна вместить все знания, накопленные человечеством. Поэтому предположение о том, что мозг человека запоминает все происходящее в течение жизни в организме и при взаимодействии со средой биологически является вполне обоснованным.

Морфологически выделяют следующие составные части нейрона: тело (сома) и выросты цитоплазмы – многочисленные и, как правило, короткие ветвящиеся отростки, дендриты, и один наиболее длинный отросток – аксон. Выделяют также аксонный холмик – место выхода аксона из тела нейрона. Функционально принято выделять три части нейрона: воспринимающую – дендриты и мембрана сомы нейрона, интегративную – сома с аксонным холмиком и передающую – аксонный холмик и аксон.

Тело клетки содержит ядро и аппарат синтеза ферментов и других молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет при­близительно сферическую или пирамидальную форму.

Дендриты – основное воспринимающее поле нейрона. Мембрана нейрона и синаптической части тела клетки способна реагировать на медиаторы, выделяемые в синапсах, изменением электрического потенциала. Нейрон как информационная структура должен иметь большое количество входов. Обычно нейрон имеет несколько ветвящихся дендритов. Информация от других нейронов поступает к нему через специализированные контакты на мембране – шипики. Чем сложнее функция данной нервной структуры, чем больше сенсорных систем посылают к ней информацию, тем больше шипиков на дендритах нейронов. Максимальное их количество содержится на пирамидных нейронах двигательной зоны коры большого мозга и достигает нескольких тысяч. Шипики занимают до 43% поверхности мембраны сомы и дендритов. За счет шипиков воспринимающая поверхность нейрона значительно возрастает и может достигать, например, у клеток Пуркинье, 250 000 мкм 2 (сравним с размером нейрона – от 6 до 120 мкм). Важно подчеркнуть, что шипики являются не только структурным, но и функциональным образованием: их количество определяется информацией, поступающей к нейрону; если данный шипик или группа шипиков длительное время не получают информации, они исчезают.



Аксон представляет собой вырост цитоплазмы, приспособленный для проведения информации, собранной дендритами, переработанной в нейроне и переданной через аксонный холмик. На конце аксона находится аксонный холмик - генератор нервных импульсов. Аксон данной клетки имеет постоянный диаметр, в большинстве случаев одет в миелиовую оболочку, образованную из глии. На конце аксон имеет разветвления, в которых находятся митохондрии и секреторные образования – везикулы.

Тело и дендриты нейронов являются структурами, которые осуществляют интеграцию поступающих к нейрону многочисленных сигналов. За счет огромного количества синапсов на нервных клетках происходит взаимодействие многих ВПСП (возбуждающих постсинаптических потенциалов) и ТПСП (тормозных постсинаптических потенциалов), (об этом будет более подробно сказано во второй части); результатом такого взаимодействия является появление на мембране аксонного холмика потенциалов действия. Длительность ритмического разряда, число импульсов в одном ритмическом разряде и продолжительность интервала между разрядами являются основным способом кодирования информации, которую передает нейрон. Наиболее высокая частота импульсов в одном разряде наблюдается у вставочных нейронов, поскольку у них следовая гиперполяризация значительно короче, чем у двигательных нейронов. Восприятие поступающих к нейрону сигналов, взаимодействие возникающих под их влиянием ВПСП и ТПСП, оценка их приоритета, изменение метаболизма нервных клеток и формирование в итоге различной временной последовательности потенциалов действия составляет уникальную характеристику нервных клеток – интегративную деятельность нейронов.

Рис. Мотонейрон спинного мозга позвоночных. Указаны функции разных его частей.Области возникновения градуальных и импульсных электрических сигналов в нейронной цепи: Градуальные потенциалы, возникающие в чувствительных окончаниях афферентных (чувствительных, сенсорных) нервных клеток в ответ на раздражитель, приблизительно соответствуют его величине и длительности, хотя они и не бывают строго пропорциональным амплитуде раздражителя и не повторяют его конфигурацию. Эти потенциалы распространяются по телу чувствительного нейрона и вызывают в его аксоне импульсные распространяющиеся потенциалы действия. Когда потенциал действия достигает окончания нейрона, происходит выброс медиатора, приводящий к появлению градуального потенциала в следующем нейроне. Если в свою очередь этот потенциал достигает порогового уровня, в этом постсинаптическом нейроне появляется потенциал действия или серия таких потенциалов. Таким образом в нервной цепи наблюдается чередование градуальных и импульсных потенциалов.

Классификация нейронов

Существует несколько типов классификации нейронов.

По строению нейроны делят на три типа: униполярные, биполярные и мультиполярные.

Истинно униполярные нейроны находятся только в ядре тройничного нерва. Эти нейроны обеспечивают проприоцептивную чувствительность жевательных мышц. Остальные униполярные нейроны называют псевдоуниполярными, поскольку на самом деле они имеют два отростка, один идет с периферии нервной системы, а другой – в структуры центральной нервной системы. Оба отростка сливаются вблизи тела нервной клетки в один отросток. Такие псевдоуниполярные нейроны располагаются в сенсорных узлах: спинальных, тройничном и др. Они обеспечивают восприятие тактильной, болевой, температурной, проприоцептивной, барорецептивной, вибрационной чувствительности. Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Дендрит биполярного нейрона связан с рецептором, а аксон – с нейроном следующего уровня соответствующей сенсорной системы. Мультиполярные нейроны имеют несколько дендритов и один аксон; все они являются разновидностями веретенообразных, звездчатых, корзинчатых и пирамидных клеток. Перечисленные типы нейронов можно видеть на слайдах.

В зависимости от природы синтезируемого медиатора нейроны делятся на холинергические, норадреналинергические, ГАМК-ергические, пептидергические, дофамиергические, серотонинергические и др. Наибольшее число нейронов имеет, по-видимому, ГАМК-ергическую природу – до 30%, холинергические системы объединяют до 10 – 15%.

По чувствительности к действию раздражителей нейроны делят на моно- , би- и полисенсорные . Моносенсорные нейроны располагаются чаще в проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, большая часть нейронов первичной зоны зрительной области коры реагируют только на световое раздражение сетчатки глаза. Моносенсорные нейроны функционально подразделяются по их чувствительности к разным качествам своего раздражителя. Так, отдельные нейроны слуховой зоны коры большего мозга могут реагировать на предъявления тона частотой 1000 Гц и не реагировать на тоны другой частоты, такие нейроны называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более – полимодальными. Бисенсорные нейроны обычно располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Наример, нейроны вторичной зоны зрительной области коры реагируют на зрительные и слуховые стимулы. Полисенсорные нейроны чаще всего располагаются в ассоциативных зонах мозга; они способны реагировать на раздражение слуховой, кожной, зрительной и других сенсорных систем.

По типу импульсации нейроны делятся на фоновоактивные , то есть возбуждающиеся без действия раздражителя и молчащие , которые проявляют импульсную активность только в ответ на раздражение. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга; их число увеличивается в состоянии бодрствования. Имеется несколько типов импульсации фоновоактивных нейронов. Непрерывно–аритмичный – если нейрон генерирует импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов. Такие нейроны обеспечивают тонус нервных центров. Пачечный тип импульсации – нейроны такого типа генерируют группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка импульсов. Межимпульсные интервалы в пачке равны от 1 до 3 мс, а период молчания составляет от 15 до 120 мс. Групповой тип активности характеризуется нерегулярным появлением группы импульсов с межимпульсным интервалом от 3 до 30 мс, после чего наступает период молчания.

Фоновоактивные нейроны делятся на возбуждающиеся и тормозящиеся, которые, соответственно, увеличивают или уменьшают частоту разряда в ответ на раздражение.

По функциональному назначению нейроны подразделяются на афферентные, интернейроны, или вставочные и эфферентные.

Афферентные нейроны выполняют функцию получения и передачи информации в вышележащие структуры ЦНС. Афферентные нейроны имеют большую разветвленную сеть.

Вставочные нейроны обрабатывают информацию, полученную от афферентных нейронов, и передают ее на другие вставочные или на эфферентные нейроны. Вставочные нейроны могут быть возбуждающими или тормозными.

Эфферентные нейроны – это нейроны, передающие информацию от нервного центра к другим центрам нервной системы или к исполнительным органам. Например, эфферентные нейроны двигательной зоны коры большого мозга – пирамидные клетки посылают импульсы к мотонейронам передних рогов спинного мозга, то есть они являются эфферентными для коры, но афферентными для спинного мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для передних рогов и посылают импульсы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обеспечивающего большую скорость проведения возбуждения. Все нисходящие пути спинного мозга (пирамидный, ретикулоспинальный, руброспинальный и др.) образованы аксонами эфферентных нейронов соответствующих отделов центральной нервной системы. Нейроны автономной нервной системы, например, ядер блуждающего нерва, боковых рогов спинного мозга также относятся к эфферентным.

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно). Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга. Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию. Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества. Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе. Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз). За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

Аксон

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба. Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому. Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Дендриты

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении. Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности. Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов. Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика. Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза , где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Функции нейрона

Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

  • восприятие раздражения;
  • обработка стимула;
  • передача импульса;
  • формирование ответной реакции.

Функционально нейроны подразделяются на три группы:

Афферентные (чувствительные или сенсорные). Нейроны этой группы воспринимают, перерабатывают и отправляют электрические импульсы к центральной нервной системе. Такие клетки анатомически располагаются вне ЦНС, а в спинномозговых нейронных скоплениях (ганглиях), или таких же скоплениях черепно-мозговых нервов.

Посредники (также эти нейроны, не выходящие за пределы спинного и головного мозга, называются вставочными). Предназначение этих клеток заключается в обеспечении контакта между нейроцитами. Они расположены во всех слоях нервной системы.

Эфферентные (двигательные, моторные). Данная категория нервных клеток отвечает за передачу химических импульсов к иннервируемым органам-исполнителям, обеспечивая их работоспособность и задавая их функциональное состояние.

Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
    • звездчатые;
    • веретеновидные;
    • пирамидные (клетки Беца).
  • По количеству отростков:
    • униполярные: имеют один отросток;
    • биполярные: на теле располагаются два отростка;
    • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
    • аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
    • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
    • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.

Виды нейронов

Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – , а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

Развитие и рост нейронов

Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже. Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки. Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма. Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения. Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения. На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс. На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель. На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели. Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
    • гамма-аминомасляную кислоту (ГАМК);
    • глицин.
  • Возбуждающие медиаторы:
    • ацетилхолин;
    • дофамин;
    • серотонин;
    • норадреналин;
    • адреналин.

Восстанавливаются ли нервные клетки

Долгое время считалось, что нейроны не способны к делению. Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов. Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.

Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга. Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты. Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.

В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.

Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем. В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия. Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.

В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга. Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы. Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление). Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.

Влияние алкоголя на головной мозг

Алкоголь оказывает негативное влияние на все органы и системы, а особенно – на головной мозг. Этиловый спирт легко проникает сквозь защитные барьеры мозга. Метаболит алкоголя – ацетальдегид – серьезная угроза для нейронов: алькогольдегидрогеназа (фермент, обрабатывающий алкоголь в печени) в процессе переработки организмом тянет на себя больше количество жидкости, включая воду из мозга. Таким образом, алкогольные соединения просто сушат мозг, вытаскивая из него воду, в результате чего структуры мозга атрофируются, и происходит отмирание клеток. В случае одноразового употребления алкоголя такие процессы обратимы, чего нельзя утверждать о хроническом приеме спиртного, когда, кроме органических изменений, формируются устойчивые патохарактерологические черты алкоголика. Больше подробной информации о том, как происходит «Влияние алкоголя на мозг».