Относительная плотность крови. Физиология кровь. Физико-химические свойства крови

Часть крови находится в кровяном депо - селезёнка, лёгкие и глубокие сосуды кожи.

При потере 1 литра крови у взрослого человека - состояние не совместимое с жизнью.

Вязкость крови обусловлена наличием в ней белков и красных кровяных телец - эритроцитов. Если вязкость воды принять за 1, то вязкость плазмы будет равна 1,7-2,2, а вязкость цельной крови около 5,1.

Относительная плотность крови зависит от форменных элементов крови. Относительная плотность крови взрослого человека равна 1,050-1,060, плазмы - 1,029-1,034.

Гематокрит . При отстаивании, а ещё лучше при центрифугировании кровь разделяется на два слоя. Верхний слой - слегка желтоватая жидкость, называемая плазмой; нижний слой - осадок тёмно-красного цвета, образованный эритроцитами. На границе между плазмой и эритроцитами имеется тонкая светлая плёнка, состоящая из лейкоцитов и тромбоцитов

Процентное соотношение между плазмой и форменными элементами крови называют гематокритом . У здоровых людей примерно 55% объёма крови приходится на плазму и 45% - на долю форменных элементов. При некоторых заболеваниях, например анемии (малокровии), увеличивается объём плазмы, при других заболеваниях - форменных элементов. Поэтому величина гематокрита может служить одним из показателей при установлении диагноза того или другого заболевания.

Осмотическое давление крови равно 7,6 атм. Оно создаётся суммарным числом молекул и ионов. Несмотря на то что белков в плазме 7-8%, а солей около 1%, на долю белков приходится всего 0,03-0,04 атм (онкотическое давление). В основном осмотическое давление крови создается солями, 60% его приходится на долю NaCl. Это объясняется тем, что молекулы белков имеют огромные размеры, а величина осмотического давления зависит только от числа молекул и ионов. Постоянство осмотического давления очень важно, так как гарантирует одно из условий, необходимых для правильного хода физиологических процессов,- постоянное содержание воды в клетках и, следовательно, постоянство их объёма. Под микроскопом это можно наблюдать на примере эритроцитов. Если поместить эритроциты в раствор с более высоким, чем в крови, осмотическим давлением, то они теряют воду и сморщиваются, а в растворе с меньшим осмотическим давлением набухают, увеличиваются в объёме и могут разрушиться. То же самое происходит со всеми другими клетками при изменении осмотического давления в окружающей их жидкости.

Изотонический раствор - это раствор осмотическое давление которого равно давлению крови. Физраствор содержит 0,9% NaCl.

Гипертонический раствор (повышенное давление) - это раствор, осмотическое давление которого выше давления крови. Он приводит к плазмозу клеток. Эритроциты отдают воду и погибают.

Гипотонический раствор (пониженное давление) - при введении приводит к гемолизу (разрушение эритроцитов, сопровождающееся выходом из них гемоглобина).

Гемолиз в организме бывает:

  1. осмотический (от пониженной концентрации соли);
  2. механический (синяки, сильные встряски);
  3. химический (кислоты, щёлочи, наркотики, алкоголь);
  4. физический (при повышенной или при пониженной температуре).

Водородный показатель . В крови поддерживается постоянство реакции. Реакция среды определяется концентрацией водородных ионов, которую выражают водородным показателем - pH. В нейтральной среде pH 7,0, в кислой среде меньше 7,0, а в щелочной - больше 7,0. Кровь имеет pH 7,36, т. е. её реакция слабощелочная. Жизнь возможна в узких пределах смещения pH - от 7,0 до 7,8. Это объясняется тем, что катализаторами всех биохимических реакций являются ферменты, а они могут работать только при определённой реакции среды. Несмотря на поступление в кровь продуктов клеточного распада - кислых и щелочных веществ, даже при напряженной мышечной работе pH крови уменьшается не более чем на 0,2-0,3. Это достигается за счёт буферных систем крови (бикарбонатный, белковый, фосфатный и гемоглобиновый буферы), которые могут связывать гидроксильные (ОН -) и водородные (Н +) ионы и тем самым поддерживать реакцию крови постоянной. Выводятся из организма образовавшиеся кислые и щелочные продукты почками, с мочой. Через лёгкие удаляется углекислый газ.

Плазма крови представляет собой сложную смесь белков, аминокислот, углеводов, жиров, солей, гормонов, ферментов, антител, растворённых газов и продуктов распада белка (мочевина, мочевая кислота, креатинин, аммиак), подлежащих выведению из организма. Она имеет слабощелочную реакцию (рН 7,36). Основными компонентами плазмы являются вода (90-92%), белки (7-8%), глюкоза (0,1%), соли (0,9%). Состав плазмы характеризуется постоянством.

Белки плазмы делятся на глобулины (альфа, бета и гамма), альбумины и липопротеиды. Значение белков плазмы многообразно.

  1. Очень важную роль играет глобулин, называемый фибриногеном: он участвует в процессе свертывания крови.
  2. Гамма-глобулин содержит антитела, обеспечивающие иммунитет. В настоящее время очищенный γ-глобулин используют для лечения и повышения невосприимчивости к некоторым болезням.
  3. Наличие белков в плазме крови повышает её вязкость, что имеет значение в поддержании давления крови в сосудах.
  4. Белки имеют большую молекулярную массу, поэтому они не проникают через стенки капилляров и удерживают в сосудистой системе определенное количество воды. Таким путём они принимают участие в распределении воды между кровью и тканевой жидкостью.
  5. Являясь буферами, белки участвуют в поддержании постоянства реакции крови.

Содержание глюкозы в крови составляет 4,44-6,66 ммоль/л. Глюкоза является основным источником энергии для клеток организма. Если количество глюкозы снижается до 2,22 ммоль/л, то резко повышается возбудимость клеток мозга, у человека появляются судороги. При дальнейшем уменьшении содержания глюкозы человек впадает в коматозное состояние (нарушаются сознание, кровообращение, дыхание) и умирает.

Неорганические вещества плазмы . В состав минеральных веществ плазмы входят соли NaCl, CaCl 2 , KCl, NaHCO3, NaH 2 PO 4 и др. Соотношение и концентрация Na + , Са 2+ и К + играют важнейшую роль в жизнедеятельности организма, поэтому постоянство ионного состава плазмы регулируется очень точно. Нарушение этого постоянства, главным образом при заболеваниях желёз внутренней секреции, опасно для жизни.

  • катионы в плазме: Na + , K + , Ca 2+ , Mg 2+ ,..;
  • анионы в плазме: Cl - , HCO 3 - ,..

Значение:

  • обеспечение осмотического давления крови (на 60% обеспечивается NaCl);
  • обеспечение pH крови;
  • обеспечение определённого уровня чувствительности клеток, участвующих в формировании мембранного потенциала.

Цвет крови определяется наличием гемоглобина. Артериальная кровь характеризуется ярко-красной окраской, что зависит от содержания в ней гемоглобина, насыщенного кислородом (оксигемоглобина). Венозная кровь имеет темно-красную с синеватым оттенком окраску, что объясняется наличием в ней не только оксигемоглобина, но и восстановленного гемоглобина, на долю которого приходится приблизительно 1/3 от общего его содержания. Чем более активен орган, и чем больше гемоглобин отдал кислорода тканям, тем более темной выглядит венозная кровь.

Относительная плотность крови зависит от содержания эритроцитов и насыщения их гемоглобином. Она колеблется в пределах от 1,052 до 1,062. У женщин относительная плотность крови несколько ниже, чем у мужчин. Относительная плотность плазмы крови, в основном, определяется концентрацией белков и составляет 1,029 – 1,032.

Вязкость крови определяется по отношению к вязкости воды и соответствует 4,5 – 5,0. Следовательно, кровь человека в 4,5 – 5 раз более вязкая, чем вода. Вязкость крови зависит, главным образом, от содержания эритроцитов и в гораздо меньшей степени от белков плазмы. В то же время вязкость венозной крови несколько больше, чем артериальной, что связано с поступлением в эритроциты углекислоты, благодаря чему незначительно увеличивается их размер. Вязкость крови возрастает при опорожнении депо крови, содержащей большее число эритроцитов.

Вязкость плазмы не превышает 1,8–2,2. Больше всего на вязкость плазмы влияет белок фибриноген. Так, вязкость плазмы по сравнению с вязкостью сыворотки, в которой фибриноген отсутствует, приблизительно на 20% выше. При обильном белковом питании вязкость плазмы, а, следовательно, и крови может повышаться. Увеличение вязкости крови является неблагоприятным прогностическим признаком для людей, больных атеросклерозом и предрасположенных к таким заболеваниям, как ишемическая болезнь сердца (стенокардия, инфаркт миокарда), облитерирующий эндартериит, инсульты (кровоизлияние в мозг или образование тромбов в сосудах головного мозга).

Осмотическое давление крови . Осмотическим давлением принято называть силу, которая заставляет растворитель (для крови это вода) переходить через полупроницаемую мембрану из менее концентрированного в более концентрированный раствор. Осмотическое давление крови вычисляют криоскопическим методом с помощью определения депрессии (точки замерзания), которая для крови составляет 0,54°-0,58°. Депрессия молярного раствора (раствор, в котором растворена 1 грамм-молекула вещества в литре воды) соответствует 1,86°. Общая молекулярная концентрация в плазме и эритроцитах равна приблизительно 0,3 грамм-молекулы на литр. Подставив значения в уравнение Клапейрона (Р = cRT, где Р – осмотическое давление, с – молекулярная концентрация, R – газовая постоянная, равная 0,082 литр-атмосферы, и Т – абсолютная температура), легко рассчитать, что осмотическое давление для крови при температуре 37°С составляет 7,6 атмосферы (0,3х0,082х310=7,6). У здорового человека осмотическое давление колеблется в пределах от 7,3 до 7,6 атмосфер.


Осмотическое давление крови зависит в основном от растворенных в ней низкомолекулярных соединений, главным образом солей. Около 95% от общего осмотического давления приходится на долю неорганических электролитов, из них 60% – на долю NaCl. Осмотическое давление в крови, лимфе, тканевой жидкости, тканях приблизительно одинаково и отличается завидным постоянством. Даже если в кровь поступает значительное количество воды или соли, то и в этих случаях осмотическое давление не претерпевает существенных изменений. При избыточном поступлении воды в кровь она быстро выводится почками, а также переходит в ткани и клетки, что восстанавливает исходную величину осмотического давления. Если же в кровь поступает повышенная концентрация соли, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соли. На осмотическое давление в небольших пределах могут оказать влияние продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма.

Поддержание постоянства осмотического давления играет чрезвычайно важную роль в жизнедеятельности клеток. Их существование в условиях резкого колебания осмотического давления стало бы невозможным из-за обезвоживания тканей (при увеличении осмотического давления) или в результате разбухания от избытка воды (при снижении осмотического давления).

Онкотическое давление является частью осмотического и зависит от содержания крупномолекулярных соединений (белков) в растворе. Хотя концентрация белков в плазме довольно велика, общее количество молекул из-за их большой молекулярной массы относительно мало, благодаря чему онкотическое давление не превышает 25-30 мм рт. столба. Онкотическое давление в большей степени зависит от альбуминов (на их долю приходится до 80% онкотического давления), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.

Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани, и наоборот. Онкотическое давление не только влияет на образование тканевой жидкости и лимфы, но и регулирует процессы образования мочи, а также всасывание воды в кишечнике.

Если концентрация белка в плазме снижается, что наблюдается при белковом голодании, а также при тяжелых поражениях почек, то наступают отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Температура крови во многом зависит от интенсивности обмена того органа, от которого она оттекает. Чем интенсивнее осуществляется обмен веществ в органе, тем выше температура оттекающей от него крови. Следовательно, в одном и том же органе температура венозной крови всегда больше, чем артериальной. Это правило, однако, не распространяется на поверхностные вены кожи, соприкасающиеся с атмосферным воздухом и принимающие непосредственное участие в теплообмене. У теплокровных (гомойотермных) животных и человека температура крови в состоянии покоя в различных сосудах колеблется от 37° до 40°. Так, кровь, оттекающая от печени по венам, может иметь температуру 39,7°. Резко повышается температура крови при интенсивной мышечной работе.

При движении крови не только происходит некоторое выравнивание температуры в различных сосудах, но и создаются условия для отдачи или сохранения тепла в организме. В жаркую погоду через кожные сосуды протекает больше крови, что способствует отдаче тепла. В холодную погоду сосуды кожи суживаются, кровь вытесняется в сосуды брюшной полости, что приводит к сбережению тепла.

Концентрация водородных ионов и регуляция pH крови . Известно, что реакция крови определяется концентрацией водородных ионов. H+-ион представляет собой атом водорода, несущий положительный заряд. Степень же кислотности любой среды зависит от количества H+-ионов, находящихся в растворе. С другой стороны, степень щелочности раствора определяется концентрацией гидроксильных (OH -) ионов, несущих отрицательный заряд. Чистая дистиллированная вода при нормальных условиях рассматривается как нейтральная потому, что в ней содержится одинаковое количество Н + - и ОН - -ионов.

В десяти миллионах литров чистой воды при температуре 22° С находится 1,0 грамм ионов водорода, или 1/10 7 , что соответствует 10 - 7 .

В настоящее время кислотность растворов принято выражать как отрицательный логарифм абсолютного количества водородных ионов, содержащихся в единице объема жидкости, для чего пользуются общепринятым обозначением pH. Следовательно, pH нейтральной дистиллированной воды равняется 7. Если pH меньше 7, то в растворе будут превалировать H+-ионы над OH - -ионами, и тогда среда будет кислой, если же pH больше 7, то среда окажется щелочной, ибо в ней будут преобладать OH - -ионы над H+-ионами.

В норме pH крови в среднем соответствует 7,36,±0,03 т.е. реакция носит слабоосновной характер. pH крови отличается удивительным постоянством. Его колебания крайне незначительны. Так, в условиях покоя pH артериальной крови соответствует 7,4, а венозной – 7,34. В клетках и тканях pH достигает 7,2 и даже 7,0, что зависит от образования в них в процессе обмена веществ кислых продуктов метаболизма. При различных физиологических состояниях pH крови может изменяться как в кислую (до 7,3), так и в щелочную (до 7,5) сторону. Более значительные отклонения pH сопровождаются для организма тяжелейшими последствиями. Так при pH крови 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неминуема смерть. Если же концентрация H+ уменьшается, и pH становится равным 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти.

В процессе обмена веществ ткани выделяют в тканевую жидкость, а, следовательно, и в кровь, кислые продукты обмена, что должно приводить к сдвигу pH в кислую сторону. В результате интенсивной мышечной деятельности в кровь человека может поступать в течение нескольких минут до 90 г молочной кислоты. Если такое количество молочной кислоты было бы прибавлено к такому же количеству дистиллированной воды, то концентрация водородных ионов возросла бы в ней в 40000 раз. Реакция же крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови. Кроме того, в организме постоянство pH сохраняется за счет работы почек и легких, удаляющих из крови CO2, избыток кислот и щелочей.

Постоянство pH крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.

Самой мощной является буферная система гемоглобина . На ее долю приходится 75% буферной емкости крови. Эта система включает восстановленный гемоглобин (HHb) и калиевую соль восстановленного гемоглобина (KHb). Буферные свойства системы обусловлены тем, что KHb, будучи солью слабой кислоты, отдает ион K+ и присоединяет при этом ион H+, образуя слабодиссоциированную кислоту: H+ + KHb = K+ + HHb.

pH крови, подтекающей к тканям, благодаря восстановленному гемоглобину, способному связывать CO2 и H+-ионы, остается постоянной. В этих условиях HHb выполняет функции щелочи. В легких же гемоглобин ведет себя как кислота (оксигемоглобин, HHbO2, является более сильной кислотой, чем углекислота), что предотвращает защелачивание крови.

Карбонатная буферная система (H2CO3/NaHCO3) по своей мощности занимает второе место. Ее функции осуществляются следующим образом: NaHCO3 диссоциирует на Na+ и HCO3 - . Если в кровь поступает кислота более сильная, чем угольная, то происходит обмен ионами Na+ с образованием слабодиссоциированной и легко растворимой угольной кислоты, что предотвращает повышение концентрации H+ в крови. Увеличение же содержания угольной кислоты приводит к ее распаду (это происходит под влиянием фермента карбоангидразы, находящегося в эритроцитах) на воду и углекислый газ. Последний же поступает в легкие и выделяется наружу. Если же в кровь проникает щелочь, то она реагирует с угольной кислотой, образуя бикарбонат натрия (NaHCO3) и воду, что опять-таки препятствует сдвигу pH в щелочную сторону.

Фосфатная буферная система образована дигидрофосфатом натрия (NaH2PO4) и гидрофосфатом натрия (Na2HPO4). Первое из них ведет себя как слабая кислота, второе – как соль слабой кислоты. Если в кровь попадает более сильная кислота, то она реагирует с Na2HPO4, образуя нейтральную соль и увеличивая количество малодиссоциируемого NaH 2 PO4 - :

Na 2 HPO4 + Н 2 СО 3 = NaНСО 3 + NaH2PO4.

Избыточное количество дигидрофосфата натрия при этом будет удаляться с мочой, благодаря чему соотношение NaH2PO4 и Na2HPO4 не изменится.

Если же в кровь ввести сильное основание, то оно будет взаимодействовать с дигидрофосфатом натрия, образуя слабоосновной гидрофосфат натрия. При этом рН крови изменится крайне незначительно. В данной ситуации избыток гидрофосфата натрия выделится с мочой.

Белки плазмы крови играют роль буфера, ибо обладают амфотерными свойствами, благодаря чему в кислой среде ведут себя как основания, а в основной – как кислоты.

Буферные системы имеются и в тканях, где они сохраняют рН на относительно постоянном уровне. Главными буферами тканей являются клеточные белки и фосфаты. В процессе метаболизма кислых продуктов образуется больше, чем основных. Вот почему опасность сдвига рН в кислую сторону более велика. Благодаря этому в процессе эволюции буферные системы крови и тканей приобрели большую устойчивость к действию кислот, чем оснований. Так, для сдвига рН плазмы в щелочную сторону требуется прибавить к ней в 40-70 раз больше NaOH, чем к дистиллированной воде. Для сдвига же рН в кислую сторону необходимо добавить к плазме в 300-350 раз больше НСl, чем к воде. Основные соли слабых кислот, содержащихся в крови, образуют так называемый щелочной резерв крови . Его величина определяется по тому количеству углекислоты, которое может быть связано 100 мл крови при напряжении CO2, равном 40 мм рт. ст.

Постоянное соотношение между кислотными и щелочными эквивалентами позволяет говорить о кислотно-щелочном равновесии крови.

Важная роль в поддержании постоянства рН отводится нервной регуляции. При этом преимущественно раздражаются хеморецепторы сосудистых рефлексогенных зон, импульсы от которых поступают в продолговатый мозг и другие отделы ЦНС, что рефлекторно включает в реакцию периферические органы – почки, легкие, потовые железы, желудочно-кишечный тракт, деятельность которых направляется на восстановление исходной величины рН. Установлено, что при сдвиге рН в кислую сторону почки усиленно выделяют с мочой анион Н 2 РО 4 - . При сдвигах рН крови в щелочную сторону увеличивается выделение почками анионов НРО 2 - и НСО 3 - . Потовые железы человека способны выводить избыток молочной кислоты, а легкие – СО 2 .

При различных патологических состояниях может наблюдаться сдвиг pH как в кислую, так и в щелочную сторону. Первый из них носит название ацидоза , второй – алкалоза . Более резкие изменения pH происходят при наличии патологического очага непосредственно в тканях.

Суспензионная устойчивость крови (скорость оседания эритроцитов – СОЭ). С физико-химической точки зрения кровь представляет собой суспензию, или взвесь, ибо форменные элементы крови находятся в плазме во взвешенном состоянии. Под суспензией, или взвесью, понимается жидкость, содержащая равномерно распределенные частички другого вещества. Взвесь эритроцитов в плазме поддерживается гидрофильной природой их поверхности, а также тем, что они (как и другие форменные элементы) несут отрицательный заряд, благодаря чему отталкиваются друг от друга. Если отрицательный заряд форменных элементов уменьшается, что может быть связано с адсорбцией положительно заряженных белков или катионов, то создаются благоприятные условия для склеивания эритроцитов между собой. Особенно резко склеивание эритроцитов наблюдается при увеличении в плазме концентрации фибриногена, гаптоглобина, церулоплазмина, a- и b-липопротеинов, а также иммуноглобулинов, концентрация которых может возрастать при беременности, воспалительных, инфекционных и онкологических заболеваниях. При этом названные белки, адсорбируясь на эритроцитах, образуют между ними мостики, благодаря чему возникают так называемые монетные столбики (агрегаты). Чистая сила агрегации является разностью между силой в образовавшихся мостиках, силой электростатического отталкивания отрицательно заряженных эритроцитов и сдвиговой силой, вызывающей распад агрегатов. Не исключено, что сцепление молекул белков на поверхности эритроцитов происходит за счет слабых водородных связей и дисперсных сил Ван-дер-Ваальса.

Сопротивление «монентных столбиков» трению меньше, чем суммарное сопротивление составляющих их элементов, так как при образовании агрегатов снижается отношение поверхности к объему, благодаря чему они быстрее оседают.

"Монетные столбики", образуясь в кровотоке, могут застревать в капиллярах и тем самым препятствовать нормальному кровоснабжению клеток, тканей и органов.

Если кровь поместить в пробирку, предварительно добавив в нее вещества, препятствующие свертыванию, то через некоторое время можно будет увидеть, что она разделяется на два слоя: верхний состоит из плазмы, а нижний представляет собой форменные элементы, главным образом эритроциты. Исходя из этих свойств, Ферреус предложил изучать суспензионную устойчивость эритроцитов, определяя скорость их оседания в крови, свертываемость которой устраняется предварительным добавлением лимоннокислого натрия. Эта реакция в настоящее время получила наименование «скорость оседания эритроцитов» (СОЭ).

Определение СОЭ ведется с помощью капилляра Панченкова, на котором нанесены миллиметровые деления. Капилляр ставится в штатив на 1 час и затем определяется величина слоя плазмы над поверхностью осевших эритроцитов.

Нормальная СОЭ обусловлена нормальной протеинограммой плазмы. Величина СОЭ зависит от возраста и пола. У мужчин она равна 6-12 мм/час, у взрослых женщин – 8-15 мм/час, у стариков обоего пола до 15-20 мм/час. Наибольший вклад в увеличение СОЭ вносит белок фибриноген; при увеличении его концентрации более 3 г/литр СОЭ повышается. Уменьшение величины СОЭ часто наблюдается при увеличении уровня альбуминов. При возрастании гематокритного числа (полицитемия) СОЭ снижается. При уменьшении гематокритного числа (анемия) СОЭ всегда увеличивается.

СОЭ резко увеличивается во время беременности, когда содержание фибриногена в плазме значительно возрастает. Повышение СОЭ наблюдается при наличии воспалительных, инфекционных и онкологических заболеваний, при ожогах, отморожениях, а также при резком уменьшении числа эритроцитов в крови. Уменьшение СОЭ ниже 3 мм/час является неблагоприятным признаком, ибо свидетельствует об увеличении вязкости крови.

Величина СОЭ зависит в большей степени от свойств плазмы, нежели эритроцитов. Так, если поместить эритроциты мужчины с нормальной СОЭ в плазму беременной женщины, то они начнут оседать с такой же скоростью, как и у женщин при беременности.

Физико-химические свойства крови

Гиперволемия полицитемическая

Гиперволемия олигоцитемическая

Увеличение объема крови за счет плазмы (уменьшения гематокрита).

Развивается при задержке воды в организме в связи с заболе­ванием почек, при введении кровезаменителей. Ее можно моделиро­вать в эксперименте путем внутривенного введения животным изото­нического раствора натрия хлорида.

Увеличение объема крови за счет нарастания количества эритроцитов (увеличения гематокрита).

Наблюдается при длительной интенсивной физической работе.

Наблюдается также при понижении атмосферного давления, а также при различных заболеваниях, свя­занных с кислородным голоданием (порок сердца, эмфизема) и рас­сматривается как компенсаторное явление.

Однако при истинной эритремии (болезни Вакеза) полицитемическая гиперволемия является следствием разрастания клеток эритроцитарного ряда костного мозга.

Может наблюдаться во время мышечной работы [++736+ C.138-139]. Часть плазмы через стенки капилляров уходит из сосудистого русла в межклеточное пространство работающих мышц [++736+ C.138-139] (мышечный, тканевый рабочий отёк [НД55]). В результате объем циркулирующей крови уменьшается [++736+ C.138-139]. Поскольку форменные элементы остаются в сосудистом русле гематокрит повышается [++736+ C.138-139]. Это явление называется рабочей гемоконцентрацией (подробнее см [++736+ C.138-139]. 11 [++736+ C.138-139].2 [++736+ C.138-139].3) [++736+ C.138-139].

Рассмотрим конкретный случай (задачу) [++736+ C.138-139].

Как изменится гематокрит при физической работе, если объём крови в покое равен 5,5 л [++736+ C.138-139], объём плазмы - 2,9 л, который изменяется на 500 мл?

Объём крови в покое равен 5,5 л [++736+ C.138-139]. Из них 2,9 л составляет плазма и 2,6 л - форменные элементы крови, что соответствует гематокриту 47 % (2,6 / 5,5) [++736+ C.138-139]. Если во время работы из сосудов уходит 500 мл плазмы, объем циркулирующей крови снижается до 5 л [++736+ C.138-139]. Поскольку объем форменных элементов крови при этом не изменяется, гематокрит увеличивается - до 52 % (2,6 / 5,0) [++736+ C.138-139].

Подробнее Покровский I том С.280-284.

К физико‑химическим свойствам крови относят:

Плотность (абсолютную и относительную)

Вязкость (абсолютную и относительную)

Осмотическое давление, включающее онкотическое (коллоидно‑осмотическое) давление

Температуру

Концентрация водородных ионов (pH)

Суспензионная устойчивость крови, характеризуемая СОЭ

Цвет крови

Цвет крови определяется содержанием гемоглобина, ярко-красная окраска артериальной крови - оксигемоглобином , тем­но-красная с синеватым оттенком окраска венозной крови - восстановленным гемоглобином.



Плотность – объёмная масса

Относительная плотность крови составляет 1,058 - 1,062 и зависит преимущественно от содержания эритроцитов.

Относи­тельная плотность плазмы крови в основном определяется концен­трацией белков и составляет 1,029-1,032.

Плотность воды (абсолютная) = 1000 кг ·м -3 .

Вязкость крови

Подробнее Ремизов ++636+ С.148

Вязкость – внутреннее трение.

Вязкость воды (при 20ºС) 0,001 Па×с или 1 мПа×с.

Вязкость крови человека (при 37ºС) в норме 4-5 мПа×с, при патологии колеблется 1,7 ¸ 22,9 мПа×с.

Относительная вязкость крови в 4,5-5,0 раз больше вязкости воды. Вязкость плазмы не превышает 1,8-2,2.

Отно­шение вязкости крови и вязкости воды при той же температуре называютотносительной вязкостью крови.

Изменения вязкости крови как неньютоновской жидкости

Кровь – неньютоновская жидкость – вязкость анормальная, т.е. взкость крови величина непостоянная.

Вязкость крови в сосудах

Чем меньше скорость движения крови, тем больше вязкость крови. Это связано с обратимой агрегацией эритроцитов (образование монетных столбиков), прилипанием эритроцитов к стенкам сосудов.

Феномен Фареуса‑Линдквиста

В сосудах диаметром менее 500 мкм вязкость резко уменьшается и приближается к вязкости плазмы. Это связано с ориентацией эритроцитов вдоль оси сосуда и образованием «бесклеточной краевой зоной».

Вязкость крови и гематокрит

Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы.

Увеличение Ht сопровождается более быстрым возрастанием вязкости крови, чем при линейной зависимости

Вязкость венозной крови несколько больше, чем артериальной[Б56] .

Вязкость крови возрастает при опорожнении депо крови, содержащей большее число эритро­цитов.

Венозная кровь обладает несколько боль­шей вязкостью, чем артериальная. При тяжелой физической работе увеличивается вязкость крови.

Некоторые инфекционные заболевания увеличивают вязкость, другие же, например брюшной тиф и туберкулез, - уменьшают.

Вязкость крови влияет на скорости оседа­ния эритроцитов (СОЭ).

Методы определения вязкости крови

Совокупность методов измерения вязкости называютвискозиметри­ей, а приборы, используемые для таких целей, -вискозиметрами.

Наиболее распространенные методы вискозиметрии:

падающего шарика

капиллярные

ротационные.

Капиллярный метод основан на формуле Пуазейля и заключает­ся в измерении времени протекания через капилляр жидкости известной массы под действием силы тяжести при определенном перепаде давлений.

Метод падающего шарика используется в вискозиметрах, осно­ванных на законе Стокса.

(плазмы) и числа ее форменных элементов (клеток крови). Является очень важным показателем состояния крови, определяющим максимальный срок нормального функционирования сердца и сосудов.

Свойства физиологического процесса
Для нормального кровообращения вязкость крови имеет большое значение, так как связана с сопротивлением, которое приходится преодолевать при работе мышце сердца. В течение дня происходят только незначительные колебания вязкости крови.
Вязкость крови повышают:

  • снижение температуры тела (охлаждение);
  • малое употребление жидкости;
  • прием алкоголя;
  • вдыхание паров эфира;
  • повышенный уровень углекислоты в крови;
  • ограничение употребления поваренной соли ниже физиологической потребности;
  • употребление мочегонных средств;
  • употребление потогонных, жаропонижающих средств;
  • редкий прием пищи (1-2 раза в день);
  • переедание за один прием пищи, особенно с последующим приемом ферментных препаратов для улучшения пищеварения;
  • однократное употребление значительного количества крахмалистых (овощи, крупы, макаронные и хлебобулочные изделия) или белковых (мясо, рыба) продуктов;
  • длительная тяжелая работа.

Вязкость крови снижают:

  • препараты хинного дерева;
  • длительная умеренная работа;
  • высокий уровень кислорода в крови;
  • повышение температуры тела ;
  • горячие ванны;
  • фосфорная кислота.

Виды нарушений физиологического процесса

  1. Уменьшение вязкости крови. Наблюдается в условиях восстановления объема жидкой части крови при значительном уменьшении числа ее форменных элементов (например, на этапе компенсации количества жидкости при острой кровопотере).
  2. Увеличение вязкости крови. Наблюдается при повышении количества кровяных клеток относительно объема плазмы. Приводит к затруднению основной транспортной функции крови, что является причиной нарушения окислительно-восстановительных процессов во всех органах и тканях - головном мозге, легких, сердце, печени, почках (что проявляется быстрой утомляемостью, сонливостью в течение дня, ухудшением памяти).

Заболевания
Увеличение вязкости крови:

  • образование тромбов в сосудах и сердце (тромбоз);
  • тромбоэмболия (закупоривание тромбом просвета сосуда);
  • острая сердечная недостаточность;
  • снижение или повышение уровня артериального давления;
  • ишемический либо геморрагический инсульт;
  • острая легочная недостаточность;

Уменьшение вязкости крови:

  • снижение свертываемости крови, сочетающееся нередко с геморрагическим синдромом (массивными кровотечениями);
  • анемия.

Создано по материалам:

  1. Благов О. В., Гиляров М. Ю., Недоступ А. В. Медикаментозное лечение нарушений ритма сердца / под ред. В. А. Сулимова. - М.: ГЭОТАР-Медиа, 2011.
  2. Зайко Н. Н. , Быць Ю. В., Атаман А. В. и др. Патологическая физиология. Учебник для студентов медицинских вузов. - К.: Логос, 1996.