Открытия современных генетиков. Самые важные открытия в генетике последних лет. Каждую аминокислоту кодирует один триплет или более

Российские учёные из Института общей генетики им. Вавилова впервые в России получили донорскую кровь — не от донора, а из… кожи. А ещё раньше — вырастили из неё зачаток глаза человека.

Означает ли это, что учёные всё-таки научились выращивать «запчасти» к отслужившим свой срок органам и тканям, персонально подходящие каждому человеку? Об этом «АиФ» спросил у Марии Лагарьковой, доктора биологических наук, руководителя лаборатории Института общей генетики им. Вавилова РАН, которая занимается новейшими исследованиями в области стволовых клеток.

Магия укола

Юлия Борта, «АиФ»: Мария Андреевна, помимо крови в вашей лаборатории вырастили подобие мини-сердца…

Мария Лагарькова: Да, мы первые в России. Но подобные работы проводились и в США, Англии, Японии.

— Стволовые клетки уже обросли нереальным количеством легенд — от сенсаций, что они могут исцелить всё, до страшилок о развитии рака у звёзд, которые использовали их для омоложения.

— Инъекции стволовых клеток косметологами — полный бред. Откуда они их взяли, как получили? Почему кололи в лицо, а опухоль возникла совершенно в другом месте? Думаю, что слухи о связи косметических процедур с образованием опухолей не имеют никаких оснований. Стволовые клетки очень разные. Они есть в нашем взрослом организме. В костном мозге — стволовые клетки крови. Они могут превратиться в любую клетку крови. Другие умеют делать кость, хрящ или жир, но не способны делать кровь. В голов­ном мозге есть стволовые клетки, которые могут превращаться только в клетки мозга. Каждый тип стволовых клеток всю жизнь сидит на своём месте и отвечает за воспроизводство определённых тканей. Но есть универсальные стволовые клетки, которые могут превращаться в абсолютно любую клетку организма. Во взрослом организме их нет. Их можно выделить из невостребованных для искусственного оплодотворения (ЭКО) эмбрионов и растить в пробирке.

— И ими можно заменить поражённые клетки в организме?

— По статистике, они подойдут всего одному из десятка тысяч человек. Недавно учёные решили эту проблему. За это открытие в 2012 г. японцу С. Яманаке вручили Нобелевскую премию. У любого человека можно взять кусочек кожи — меньше квадратного миллиметра, волос или кровь, выделить клетки, внедрить в них набор определённых генов и получить ту самую универсальную стволовую клетку, а её превратить во что захотим. Персонально для каждого можно сделать идеально совместимые с ним нейроны, кровь, кость, хрящ — всё что угодно. Японцы создали таким образом один из типов клеток сетчатки глаза. Сейчас в Японии начинается первая стадия клинических испытаний. Многие работают над получением клеток, вырабатывающих инсулин. Как только это произойдёт, вероятно, все больные диабетом смогут навсегда излечиться. Но пока есть масса сложностей. Очень трудно создать клетки, ответственные за кроветворение. Не выработано и понимание того, как заставить превращаться все клетки 100%-но.
Иначе вместо нерва может вырасти, к примеру, кость.

Уже не фантастика

— Клетки научились воссоздавать. А органы целиком?

— Пока нет. Любой орган состоит из многих типов клеток, имеет трёхмерную структуру, форму, пронизан сосудами и нервами. Хотя мини-органы уже получаются. В нашей лаборатории мы создали подобие зачатка глаза. Японцы вырастили зачаток зуба. Голландцы — мини-кишку. Но ещё не скоро выращенное в пробирке сердце будет пересажено человеку.

— Почему?

— Нерешённых вопросов много. Например, как доставить клетки, выращенные в лаборатории, в нужный орган, чтобы они прижились, образовали связи с соседними, проросли сосудами. Это удалось пока только с отдельными типами клеток. Технологии генетической инженерии дошли до того, что в любых больных клетках можно исправить генетическую поломку, вызвавшую болезнь. Осталось научиться пересаживать выращенные в лаборатории клетки обратно человеку.

В 2017 году cпециалисты по наследственности предоставили миру невероятные новые инструменты генетического редактирования и обнаружили уязвимые места бактерий и вирусов.

Помимо этого, они сделали ряд фундаментальных открытий, которые приблизили нас к пониманию феномена жизни. Мы выбрали 10 главных открытий и достижений в области генетики за 2017 год, передает hightech.fm .

1. Впервые отредактирован геном живого человека

Операцию провели в Калифорнии сотрудники компании Sangamo Therapeutics. Все прочие опыты, за исключением одного в Китае, о котором мало что известно, осуществлялись исключительно на образцах эмбриональной ткани.

Для 44-летнего пациента редактирование генома стало последним шансом. Брайан Маде страдает от синдрома Хантера, связанного с неспособностью печени производить важный фермент для расщепления мукополисахаридов. Фермент приходится вводить искусственно, что очень дорого, к тому же для борьбы с последствиями болезни Маде пришлось пройти через 26 операций. Чтобы помочь Брайану, ему внутривенно ввели миллиарды копий корректирующих генов, а также генетические инструменты, которые должны разрезать ДНК в определенных местах. Геном клеток печени должен измениться на всю оставшуюся жизнь. В случае успеха лечения исследователи продолжат эксперименты с другими наследственными заболеваниями.

2. Создан стабильный полусинтетический организм

В основе любой жизни на Земле лежат четыре буквы-нуклеиновых основания: аденин, тимин, цитозин и гуанин (A, T, C, G). Используя этот алфавит, можно создать любой живой организм, от бактерии до кита. Ученые давно пытаются «взломать» этот код, и в этом году им это, наконец, удалось. Прорыв совершили генетики из Исследовательского института Скриппс. Они дополнили генетический алфавит двумя новыми буквами - X и Y, которые вставили в ДНК кишечной палочки.


Вводить искусственные буквы в ДНК научились уже несколько лет назад, настоящим прорывом 2017 года стала стабильность искусственного организма. Раньше основания X и Y терялись при делениях, и потомки модифицированной бактерии быстро возвращались к «дикому» состоянию. Благодаря усовершенствованию технологий и изменениям, внесенным в основание Y, удалось добиться сохранения искусственных «букв» в геноме бактерий на протяжении 60 поколений. Применение новой технологии на практике пока остается делом будущего - возможно, ее можно будет применить для придания микроорганизмам новых свойств. Пока же для исследователей важнее тот факт, что им удалось модифицировать один из фундаментальных механизмов жизни.

3. Обнаружен «космический ген»

Мир переживает «космический Ренессанс»: компании во главе со SpaceX одна за другой рвутся в космос, а правительства планируют строить колонии на Марсе и Луне. Однако не стоит забывать, что миллионы лет наш вид и его предки эволюционировали для жизни на поверхности Земли. Важно заранее узнать, как долгое пребывание в космосе и на других планетах отразится на человеческом организме, чтобы предпринять необходимые меры защиты. К счастью, у исследователей появилась такая возможность - астронавт Скотт Келли, который провел на МКС около года, и его брат-близнец Марк, остававшийся на Земле, согласились на полное обследование своих организмов.


Помимо ожидаемых физиологических изменений, вызванных невесомостью, ученые с удивлением обнаружили различия в геномах братьев. У Скотта было зафиксировано временное удлинение теломер - концевых участков хромосом, а также изменения в экспрессии более 200 000 молекул РНК. Процесс включения и выключения тысяч генов преобразовался из-за пребывания в космосе. Ученые назвали совокупность этих изменений «космическим геном». Пока неизвестно, как он повлиял на здоровье Скотта - эксперименты с близнецами Келли продолжаются.

4. Доказана эффективность генетической терапии

В 2017 году CRISPR и другие технологии генетического редактирования все активнее применяли для борьбы с различными заболеваниями. В отличие от случая Брайана Маде, большинство подобных методик не требуют масштабных модификаций генома, а клетки редактируются не в организме пациента, а в лаборатории. Подобные способы получили название генетической терапии. В уходящем году исследователи неоднократно доказывали ее эффективность против различных болезней.

Самым ярким примером является борьба с опасным заболеванием, которое и само имеет генетическую природу. Речь идет о раке - точнее, пока только о некоторых его разновидностях. Исследователи продемонстрировали, что, взяв иммунные клетки больных лимфомой, с помощью генного редактирования настроив их на борьбу с опухолью и введя обратно пациенту, можно добиться высокого процента ремиссии. Метод, запатентованный под названием Kymriah™, в августе 2017 года был одобрен FDA.

5. Устойчивость к антибиотикам объяснена на молекулярном уровне

В 2017 году обеспокоенные ученые объявили, что настал конец эпохи антибиотиков. Средство, которое почти сто лет спасало миллионы человеческих жизней, быстро становится неэффективным из-за появления устойчивых к антибиотикам бактерий. Это происходит благодаря быстрому размножению микроорганизмов и их способности обмениваться генами. Одна бактерия, научившаяся сопротивляться воздействию лекарств, передаст это умение не только своим потомкам, но и любым находящимся поблизости представителям своего вида.


Однако пока одни пишут манифесты с призывами к правительствам и общественности, другие ищут у супербактерий уязвимые места. Поняв молекулярные основы устойчивости к лекарствам, мы сможем эффективно противостоять супербактериям. Датским ученым впервые удалось доказать, что гены устойчивости и гены антибиотиков родственны друг другу. Микроорганизмы рода Actinobacteria производят как антибиотики, так и вещества, способные их нейтрализовать. Болезнетворные бактерии способны «воровать» у актинобактерий гены, отвечающие за устойчивость, и распространять их по популяции. Хотя остановить горизонтальный перенос генов не под силу никому, обнаруженный механизм позволит найти новые средства борьбы с супербактериями.

6. Выявлены гены долгожительства

В отличие от различных болезней, которые можно научиться лечить, старение является по-настоящему экзистенциальной проблемой. Исследователи твердо намерены «отменить» его, но мы пока точно не знаем ни механизмов старения, ни последствий, которые его исчезновение произведет в обществе. Впрочем, специалисты настроены оптимистично. В 2017 году был проведен целый ряд исследований в области генетики старения, которые могут стать ключом к решению проблемы.

Одним из направлений стал поиск мутаций, связанных с долгожительством. Одна из них была обнаружена в общине амишей. Мутация отвечала за сниженный уровень ингибитора активатора плазминогена (PAI-1). Ее носители жили в среднем на 14 лет дольше, чем другие амиши (85 лет против 71 года). Также они реже болели возрастными заболеваниями, а их теломеры были длиннее. В других исследованиях было показано, что мутация рецептора гормона роста повышает продолжительность жизни у мужчин, а уровень интеллекта генетически связан с медленным старением. Также в прошедшем году китайские ученые обнаружили ген долгожительства у червей. На основе всех этих работ можно попытаться создать настоящее лекарство против старости. Возможно, одним из методов станет генетическая коррекция митохондрий - внутриклеточных батареек, которые с возрастом теряют гибкость.

7. Генетический скрининг стал еще точнее

Мы - это наши гены. По крайней мере, эта идея верна в отношении здоровья, ведь причиной многих болезней является генетическая предрасположенность к ним. Расшифровав свою ДНК, можно узнать о рисках тех или иных заболеваний и предпринять меры профилактики. В 2017 году технологии генетического скрининга совершенствовались и становились все более доступными благодаря ученым и представителям биотехнологических компаний. Например, теперь можно заранее предсказать риск развития сердечно-сосудистых заболеваний и даже склонность к прокрастинации.


Генетический скрининг важен не только для взрослых, но и для еще не родившихся детей и их родителей, и в этой сфере также есть движение вперед. Так, прошлогоднее исследование показало, что новая методика диагностики синдрома Дауна (и ряда других заболеваний) повысила точность предсказаний до 95%. Теперь потенциальные родители смогут решить судьбу плода, не опасаясь ошибки. Стартап Genomic Prediction идет еще дальше: он обещает с высокой точностью предсказывать рост, интеллект и здоровье будущего ребенка. Он использует новые технологии, благодаря которым стало возможным предугадывать не только заболевания и отклонения в развитии, вызванные единичной мутацией, но и состояния, формирующиеся путем взаимодействия множества генов. По сути, это уже евгеника, и к подобной практике возникает ряд этических вопросов.

8. Уточнены генетические механизмы эволюции

У основ теории эволюции стояли Чарльз Дарвин, открывший естественный отбор, и Грегор Мендель, впервые описавший механизмы наследственности. Ученые XX века смогли узнать, как эволюция работает на молекулярном уровне. Однако мы до сих пор далеки от полного понимания этого процесса, и каждый год приносит новые открытия. 2017 не стал исключением. Одной из главных работ о связи генетики и эволюции стало изучение рыб семейства цихлид, которое продемонстрировало, что наследственностью объясняются далеко не все признаки живых организмов. Например, в формировании костей черепа рыб огромную роль играет поведение.

Помимо этого, ученые сделали еще целый ряд замечательных фундаментальных открытий генетических основ эволюции. Им удалось понять, как бесполый червь выживал без секса 18 млн лет, уточнить роль случайности в эволюции и понять, что вирусы служат важнейшим источником новых генов.

9. На ДНК впервые записали музыку

ДНК - система хранения информации, которая успешно работала миллиарды лет. Она надежна и занимает совсем немного места. Поэтому идея использовать ее для записи информации кажется очевидной, ведь люди производят и собирают все больше данных, которые нужно где-то хранить. В 2016 году ученые из Microsoft перевели 200 Мб информации в молекулу ДНК размером с крупинку соли. В 2017 исследования в этой области продолжились.


Компания Twist Bioscience сумела впервые в истории записать на ДНК музыкальный файл. Для этого были выбраны две композиции: «Tutu» Майлза Дэвиса (живая запись с джазового фестиваля в Монтре 1986 года) и хит Deep Purple «Smoke on the Water». По словам исследователей, записи получились идеальными, и любой сможет послушать их, например, через триста лет - достаточно будет воспользоваться машиной, читающей ДНК. В отличие от современных носителей, записи с помощью нуклеиновых кислот не подвержены быстрому разрушению. К тому же этот способ хранения данных настолько компактен, что, согласно расчетам, вся информация из Интернета, закодированная в ДНК, уместится в большую обувную коробку.

10. Созданы генетический принтер и биологический телепорт

С помощью 3D-печати сегодня создают дома, металлические детали и даже органы. Генетик Джон Крейг Вентер решил не останавливаться на этом и построил «генетический принтер», который вместо чернил заполняется основаниями и может печатать ДНК живых организмов. Пока речь идет о наиболее примитивных созданиях, таких как вирусы, например, вирус гриппа, и бактерии, а также об отдельных участках геномов и РНК.

У технологии возможно и намного более фантастическое применение - «биологический телепорт». Отправив принтер с нужными материалами на Марс, можно будет с помощью радио отправить ему сигналы для печати бактерий. По мнению Вентера, это самый реалистичный сценарий колонизации Красной планеты: сначала микроорганизмы преобразуют среду, а потом на терраформированный Марс придет человек. Идея уже заинтересовала Илона Маска.Twitter


Если не считать опытов по гибридизации растений в XVIII в., первые работы по генетике в России были начаты в начале XX в. как на опытных сельскохозяйственных станциях, так и в среде университетских биологов, преимущественно тех, кто занимался экспериментальной ботаникой и зоологией. После революции и гражданской войны 1917-1922 гг. началось стремительное организационное развитие науки. Генетика человека на этапе ее становления обозначалась в нашей стране в духе времени – евгеникой. Обсуждение возможностей евгеники, совпавшее по времени со стартом и быстрым развитием генетических исследований в России, опиралось на традиции русской медицины и биологии. Это обстоятельство сделало русское евгеническое движение уникальным: его деятельность, направляемая Н.К. Кольцовым и Ю.А. Филипченко, строилась вокруг исследовательской программы Ф. Гальтона, целью которой было раскрытие фактов наследственности человека и относительной роли наследственности и среды в развитии различных признаков. Н.К. Кольцов, Ю.А. Филипченко и их последователи занимались обсуждением проблем генетики человека и медицинской генетики, включая популяционный аспект проблемы. Благодаря этим особенностям русского евгенического движения, в 30-х годах был создан прочный фундамент медицинской генетики.

К концу 1930-х годов в СССР была создана обширная сеть научно-исследовательских институтов и опытных станций (как в Академии наук СССР, так и во Всесоюзной академии сельскохозяйственных наук имени Ленина (ВАСХНИЛ)), а также вузовских кафедр генетики. Важным шагом к оформлению генетики как автономной области исследований явилось решение целого ряда просветительских задач и образования весной 1928 г. Общества по изучению расовой патологии и географического распределения болезней. Новое общество, обладая широким кругом интересов, представляло собой эскиз будущего Медико-генетического института. Его основал некоторое время спустя Соломон Григорьевич Левит (1894–1938). В 1930 г. кабинет был расширен до Генетического отделения при Медико-биологическом институте (МБИ). Левит стал директором института и переориентировал его на генетику человека. Медико-биологический институт с осени 1932 г. (после 8-месячного перерыва) снова "сосредоточился на разработке проблем биологии, патологии и психологии человека путем применения новейших достижений генетики и смежных дисциплин (цитологии, механики развития, эволюционного учения). Основные работы института пошли по трем руслам: клинико-генетическому, близнецовому и цитологическому.

Признанными лидерами направления были Н. И. Вавилов, Н. К. Кольцов, А С. Серебровский, С. С. Четвериков и др. В СССР издавали переводы трудов иностранных генетиков, в том числе Т. Моргана, Г. Мёллера, ряд генетиков участвовали в международных программах научного обмена. Американский генетик Г. Мёллер работал в СССР (1934-1937), советские генетики работали за границей. Н.В. Тимофеев-Ресовский - в Германии (с 1925 г.), Ф.Г. Добржанский - в США (с 1927г.).

Среди работ отечественных ученых, опубликованных в этот период, следует отметить монографию Левита "Проблема доминантности у человека". В ней был доказан факт резкой фенотипической вариабельности большинства патологических мутантных генов человека. Левит пришел к выводу, что патологические гены человека являются, в своем большинстве, условно доминантными и отличаются низким проявлением в гетерозиготе. Этот вывод Левита противоречил теории эволюции Фишера, согласно которой вновь возникающие мутантные гены рецессивны. Однако в свете работ школы С.С.Четверикова и С.Н.Давиденкова 20-х и 30-х гг. следует признать гипотезу Левита более адекватной. Сотрудники МБИ перевели на русский язык пионерскую книгу Фишера "Генетическая теория естественного отбора", включавшую изложение его теории эволюции доминантности, но изъяли из перевода евгенические главы. К этому переводу проявлял интерес автор; материалы книги широко обсуждались и серьезно комментировались.

Большое значение МБИ придавал обследованию одно- и двуяйцовых близнецов. В конце 1933 г. было охвачено 600 пар близнецов, весной 1934 – 700 пар, а весной 1937 г. было 1700 пар (по размаху работ Институт Левита был на первом месте в мире). Близнецы изучались врачами всех специальностей; детям оказывалась необходимая медицинская помощь; при МБИ работал детский сад (на 7 пар близнецов, 1933 г.); по предложению С.Г.Левита, в консерватории училось пять пар близнецов (с целью выяснения эффективных методов обучения). К 1933 г. применение близнецового метода дало результаты в выяснении роли наследственности и среды в физиологии и патологии ребенка, в изменчивости электрокардиограммы, некоторых психических признаков и т.д. Другой круг вопросов касался корреляций различных функций и признаков организма; третий был посвящен выяснению сравнительной эффективности различных способов обучения и целесообразности того или иного воздействия. Н.С.Четвериков и М.В.Игнатьев занимались разработкой вариационно-статистических методов для интерпретации получаемых данных. Была предпринята попытка точного количественного учета роли факторов наследственности и воздействия среды, как создающих внутрисемейную корреляцию, так и не создающих ее. Все это имело важные теоретические и практические последствия.

Среди конкретных работ МБИ было замечательное теоретическое исследование В.П. Эфроимсона 1932 г. Анализируя равновесие между накоплением мутаций и интенсивностью отбора, он рассчитал темп мутационного процесса у человека. Вскоре В.П.Эфроимсон был арестован по политическому обвинению, а в 1933 г. осужден ОГПУ по ст. 58-1 на три года ИТЛ. Через отца он передал из тюрьмы текст для зачтения на семинаре. Статья не была опубликована. Затем Холдейн независимо сделал аналогичную работу. С.Г. Левит и другие докладчики, каждый из которых внес оригинальный вклад в общее дело, определили предмет новой автономной области исследований. 15 мая 1934 г. новая наука получила легитимное наименование: "медицинская генетика".

В 1930-е гг. в рядах генетиков и селекционеров наметился раскол, связанный с энергичной деятельностью Т.Д. Лысенко. По инициативе генетиков был проведён ряд дискуссий (наиболее крупные - в 1936 и 1939 г.), направленных на борьбу с подходом Лысенко. На рубеже 1930-1940-х гг. ряд видных генетиков были арестованы, многие расстреляны или погибли в тюрьмах, в том числе, Н. И. Вавилов - выдающийся отечественный биолог и автор современной теории селекции; разработал учение о центрах происхождения культурных растений; сформулировавший закон гомологических рядов; разработавший учение о виде как системе.

В 1948 году на августовской сессии ВАСХНИЛТ. Д. Лысенко, пользуясь поддержкой И.В. Сталина, объявил генетику лженаукой. Лысенко воспользовался некомпетентностью партийного руководства в науке, "пообещав партии" быстрое создание новых высокопродуктивных сортов зерна ("ветвистая пшеница") и др. С этого момента начался период гонений на генетику, который получил название "лысенковщины" и продолжался вплоть до снятия Н.С. Хрущева с поста генерального секретаря ЦК КПСС в 1964 г. Лично Т.Д. Лысенко и его сторонники получили контроль над институтами отделения биологии АН СССР, ВАСХНИЛ и вузовскими кафедрами. Были изданы новые учебники для школ и вузов, написанные с позиций "Мичуринской биологии". Генетики вынуждены были оставить научную деятельность или радикально изменить профиль работы. Некоторым удалось продолжить исследования по генетике в рамках программ по изучению радиационной и химической опасности за пределами организаций, подконтрольных Т.Д. Лысенко и его сторонникам.

После открытия и расшифровки структуры ДНК, физической базы генов (1953 г.), с середины 1960-х г. началось восстановление генетики. Министр просвещения РСФСР В.Н. Столетов инициировал широкую дискуссию между лысенковцами и генетиками, в результате было опубликовано много новых работ по генетике. В 1963 г. вышел в свет университетский учебник М.Е. Лобашёва "Генетика", выдержавший впоследствии несколько изданий. Вскоре появился и новый школьный учебник "Общая биология" под редакцией Ю. И. Полянского, используемый, наряду с другими, и по сей день. В 1964 г., еще до снятия запрета на генетику, вышел в свет первый современный отечественный учебник Эфроимсона "Введение в медицинскую генетику". В 1969 г. был организован Институт медицинской генетики АМН СССР, ядро которого составили сотрудники отдела Н.В. Тимофеева-Ресовского и лабораторий Прокофьевой-Бельговской и Эфроимсона. Возник своего рода преемник Медико-генетического института. При организации нового ИМГ планировалось создание специального журнала, однако замысел не был осуществлен. Первый с 30-х годов журнал, посвященный изучению человека ("Человек"), был создан в 1990 г. при Институте человека АН СССР.

Таким образом, отечественные исследователи внесли значительный вклад в развитие такого раздела биологии как генетика. Этот вклад мог бы быть еще более весомым, если бы им были созданы столь же благоприятные условия для разработки собственных оригинальных идей, как и зарубежным генетикам Видимо в этим кроется одна из причин того, что современная российская генетика значительно отстала в своем развитии от западной науки.



Хотя история генетики началась в XIX веке, еще древние люди замечали, что животные и растения передают в ряду поколений свои признаки. Другими словами, было очевидно, что в природе существует наследственность. При этом отдельные признаки могут изменяться. То есть помимо наследственности в природе существует изменчивость. Наследственность и изменчивость относятся к основным свойствам живой материи. Долгое время (до XIX-XX веков) истинная причина их существования была скрыта от человека. Это порождало ряд гипотез, которые можно разделить на два типа: прямое наследование и непрямое наследование.

Приверженцы прямого наследования (Гиппократ, Ламарк, Дарвин и др.) предполагали, что дочернему организму через определенные субстанции (геммулы по Дарвину), собирающиеся в половых продуктах, передается информация от каждого органа и каждой части тела родительского организма. По Ламарку следовало, что повреждение или сильное развитие органа напрямую передастся следующему поколению. Гипотезы непрямого наследования (Аристотель в IV в. до н. э., Вейсман в XIX в.) утверждали, что половые продукты образуются в организме отдельно и «не знают» об изменениях в органах тела.

В любом случае обе гипотезы искали «субстрат» наследственности и изменчивости.

История генетики как науки началась с работ Грегора Менделя (1822-1884), который в 60-х годах провел систематические и многочисленные опыты над горохом, установил ряд закономерностей наследственности, впервые высказал предположения об организации наследственного материала. Правильный выбор объекта исследования, изучаемых признаков, а также научная удача позволили ему сформулировать три закона:

Мендель понял, что наследственный материал дискретен, представлен отдельными задатками, передающимися потомству. При этом каждый задаток отвечает за развитие определенного признака организма. Признак обеспечивается парой задатков, пришедших с половыми клетками от обоих родителей.

В то время научному открытию Менделя не придали особого значения. Его законы были переоткрыты в начале XX века несколькими учеными на разных растениях и животных.

В 80-х годах XIX века были описаны митоз и мейоз, в ходе которых между дочерними клетками закономерно распределяются хромосомы. В начале XX века Т. Бовери и У. Сеттон пришли к выводу, что преемственность свойств в ряду поколений организмов определяется преемственностью их хромосом . То есть к этому периоду времени научный мир понял, в каких структурах заключается «субстрат» наследственности.

У. Бэтсоном был открыт закон чистоты гамет , а наука о наследственности и изменчивости впервые в истории была названа им генетикой . В. Иогансен ввел в науку понятия (1909 г.) , генотипа и фенотипа . В то время ученые уже поняли, что ген представляет собой элементарный наследственный фактор . Но его химическая природа еще не была известна.

В 1906 году было открытоявление сцепления генов , в том числе наследование признаков, сцепленное с полом . Понятие генотипа подчеркивало, что гены организма не просто набор независимых единиц наследственности, они образуют систему, в которой наблюдаются определенные зависимости.

Параллельно с изучением наследственности происходили открытия закономерностей изменчивости. В 1901 году де Фризом были заложены основы учения о мутационной изменчивости, связанной с возникновением изменений в хромосомах, что приводит к возникновению изменений признаков. Чуть позже было обнаружено, что часто возникают при воздействии радиации, определенных химических веществ и др. Таким образом было доказано, что хромосомы являются не только «субстратом» наследственности, но также изменчивости.

В 1910 году, во многом обобщая более ранние открытия, группой Т. Моргана была разработана хромосомная теория :

    Гены находятся в хромосомах и расположены там линейно.

    У каждой хромосомы есть гомологичная ей.

    От каждого из родителей потомок получает по одной из каждых гомологичных хромосом.

    Гомологичные хромосомы содержат одинаковый набор генов, но аллели генов могут быть разными.

    Гены, находящиеся в одной хромосоме, наследуются совместно () при условии их близкого расположения.

Среди прочего в начале XX века была обнаружена внехромосомная, или цитоплазматическая, наследственность, связанная с митохондриями и хлоропластами.

Химический анализ хромосом показал, что они состоят из белков и нуклеиновых кислот. В первой половине XX века многие ученые склонялись к мнению, что белки являются носителями наследственности и изменчивости.

В 40-х годах XX века в истории генетики происходит скачок. Исследования переходят на молекулярный уровень.

В 1944 году обнаруживается, что за наследственные признаки отвечает такое вещество клетки как . ДНК признается носителем генетической информации. Чуть позже было сформулировано, что один ген кодирует один полипептид .

В 1953 г. Д. Уотсон и Ф. Крик расшифровали структуру ДНК. Оказалось что это двойная спираль, состоящая из нуклеотидов . Ими была создана пространственная модель молекулы ДНК.

Позже были открыты следующие свойства (60-е годы):

    Каждая аминокислота полипептида кодируется триплетом (тремя азотистыми основаниями в ДНК).

    Каждую аминокислоту кодирует один триплет или более.

    Триплеты не перекрываются.

    Считывание начинается со стартового триплета.

    В ДНК нет «знаков препинания».

В 70-х годах в истории генетики происходит еще один качественный скачок – развитие генной инженерии . Ученые начинают синтезировать гены, изменять геномы . В это время активно изучаются молекулярные механизмы, лежащие в основе различных физиологических процессов .

В 90-х годах секвенируются геномы (расшифровывается последовательность нуклеотидов в ДНК) многих организмов. В 2003 году был завершен проект по секвенированию генома человека. В настоящее время существуют геномные базы данных . Это дает возможность комплексно исследовать физиологические особенности, заболевания человека и других организмов, а также определять родственную связь между видами. Последнее позволило систематике живых организмов выйти на новый уровень.

Генетика официально одна из молодых наук, хотя факторы наследственности и свойств различных организмов, в том числе и самого человека, интересовали людей на протяжении всей эволюции. Генетика сама по себе увлекательна и уникальна, но в то же время одна из самых сложных наук современности, требующая многолетних исследований.

К истокам развития

Становления генетики имеет длинный доисторический период. О наличии людей, которые имели особенные отличия от других, например, сиамские близнецы, сказано ещё в древних исторических трактатах, это сегодня мы называем подобные феномены генетической мутацией. А в далёкой древности эти люди воспринимались как прокажённые. Описание поколений, которые имели кровные, родовые связи между собой встречаются ещё в библии, начиная со времён Адама и Евы. Поэтому обозначение генетики как молодой науки, относительно. Впервые законы наследственности, которые положили фундамент в строение официально признанной науки, были изложены в 1865 году Менделем. По ряду разных причин, более чем на 30 лет об этих законах забыли, до момента пока в 1900 году три ботаника, живущих в разных уголках планеты, не открыли их по-новому. Так и стало принято считать весну 1900 года новой науки, а сам термин «генетика» появился через шесть лет после в 1906 году. С того момента, генетика шагнула далеко вперёд, непрерывно расширяя круг исследований. Открытий в этой области уже сделано немало и ещё ни одно ожидает учёных впереди на пути к главной цели - разгадке природы гена.

Важные открытия генетики в датах

На протяжении всего времени существования науки наблюдались новые открытия, которые влияли на развитие той или иной области генетики, их много и происходят они постоянно, остановимся на самых интересных из них:

· 1856 — установление фактора наследования Менделем;

· 1909 — появления понятия о генотипе;

· 1927 — доказано, что рентгеновские лучи имеют непосредственное влияние на мутацию всех живых организмов;

· 1944 — первые исследования ДНК;

· 1953 — создана первая структурная модель ДНК молекулы;

· 1962 — осуществлено первое клонирование живого организма (на опыте с лягушкой);

· 1969 — благодаря химическим соединениям, искусственным путём получен первый ген;

· 1985 — открытие ПЦР;

· 1986 — создание антионкогена, его клонирование и наступление новой эры борьбы с раком;

· 1988 — проект «Геном человека»;

· 2001 — расшифровка генома человека.

Удивительные генные открытия за последнее десятилетие

Ген интеллекта. Модель ДНК позволила узнать много интересного и неизведанного об человеческом организме. Интересное умозаключение сделали учёные из Калифорнии, они выявили белок, который получил название «клото» отвечающий за разум, во взаимосвязи его с геном KL-VS. Этот белок увеличивает уровень IQ сразу на шесть пунктов. Самое удивительное, его, возможно, синтезировать в лабораторных условиях искусственно, что позволит повышать интеллект человека.

Ген глупости. Учёные из Техаса выявили ген глупости. Это ген RGS14, на опыте с мышами они выявили, что если «отключить» действие этого гена, подопытные начинают быстрее ориентироваться по лабиринту и запоминать расположение находящихся там объектов. Исследователи рассчитывают, что станет возможным создать средство, которое сможет блокировать работу RGS14 и сделает человечество умнее, подарив ранее не видимые интеллектуальные способности, но для воплощения этой идеи в жизнь потребуется ещё не одно десятилетие.

Ген ожирения. Появилась прекрасная возможность списывать появления лишних килограммов на ген IRX3 и винить его во всех тяжких. Определено, что он влияет на процент жира по отношению к общей массе. Дальнейшие исследования этого направления позволят найти эффективное средство от лишнего веса и сахарного диабета.

Ген счастья. Лондонскими специалистами описан ген, его название 5-HTTLPR, отвечающий за эмоции. Суть его действия полагается в том, что благодаря нему происходит снабжение клеток серотонином. А он, в свою очередь, отвечает за наши эмоции, заставляя нас радоваться или огорчаться, всё зависит от сопутствующих факторов. Люди, у которых серотонин в ограниченном количестве больше подвержены депрессии и упадническому настроению. По мнению британских учёных, чем длиннее вариация 5-HTTLPR, тем лучше происходит доставка серотонина.

Самые необычные эксперименты

С каждым витком развития генетики, учёные пытаются сделать всё новые, неизведанные ранее открытия и порой они становятся даже интересными, но в то же самое время нелепыми.

Поразительное и необъяснимое явление наблюдается в небольшом городке Бразилии, где каждая пятая женщина рождает близнецов, мало этого они все белокурые и с голубыми глазами, что абсолютно не свойственно бразильцам. Предполагается, что причастен к этому доктор Менгель, известный своими ужасными экспериментами над людьми, он загубил тысячи жизни ни в чём не повинных людей, за это был прозван «Ангелом смерти». Его цель подобных экспериментов была выявить и поднять частоту рождаемости близнецов, для увеличения рождаемости детей арийской расы. Так вот этот зверский врач в 60-х годах посещал описываемый город в Бразилии с целью лечить жительниц этого поселения. Причастен ли он к теперешнему тотальному рождению близнецов, сказать невозможно, так как эта тайна ушла вместе с Менгелем в могилу.

Ещё одним экспериментом генетиков стало клонирование замороженной мыши, в таком состоянии она пробыла 16 лет. После ряда неудачных попыток, учёным все же удалось воссоздать клон этого несчастного животного, кто знает, может, благодаря подобным экспериментам, скоро у нас на планете появятся мамонты и динозавры?

быстрорастущие деревья ещё один генный эксперимент, этот вид растений способен достигать 27 метров в высоту всего лишь за шесть лет. Выведено такое дерево было не для красоты, а в целях получения нового, альтернативного вида топлива.

Вот сколько всего необычного получилось узнать учёным в области генетики, многие из этих открытий значительно повлияли на ход истории и жизни человечества. Пределу совершенства этой науки пока не видно, с интересом будем наблюдать за новыми генетическими исследованиями нашего тысячелетия.