Какие три цвета видит человек. Как глаз различает цвета. Восприятие цвета. Физика

1424 02.08.2019 5 мин.

Зрение – одно из важнейших чувств для восприятия окружающего мира. С помощью него мы видим объекты и предметы вокруг нас, можем оценить их размеры и форму. Если верить исследованиям, при помощи зрения мы получаем не менее 90% информации об окружающей реальности. За цветное зрение отвечает несколько зрительных компонентов, что позволяет более точно и правильно передавать изображение объектов в головной мозг для дальнейшей обработки информации. Существует несколько патологий нарушения передачи цветов, которые существенно ухудшают взаимодействие с миром и снижают качество жизни в целом.

Как устроен орган зрения?

Глаз представляет собой сложную оптическую систему, которая состоит из множества элементов, связанных между собой. Восприятие различных параметров окружающих объектов (величина, удалённость, форма и другие) обеспечивает периферическая часть зрительного анализатора, представленная глазным яблоком. Это орган шаровидной формы с тремя оболочками, который имеет два полюса – внутренний и внешний. Глазное яблоко размещено в защищенной с трех сторон костной впадине – глазнице или орбите, где окружено тонкой жировой прослойкой. Спереди находятся веки, необходимые для защиты слизистой оболочки органа и его очистки. Именно в их толще находятся железы, необходимые для постоянного увлажнения глаз и беспрепятственной работы смыкания и размыкания непосредственно век. Движение глазного яблока обеспечивают 6 разных по функциям мышц, что позволяет выполнять содружественные действия этого парного органа. Помимо этого глаз соединен с кровеносной системой разными по величине многочисленными кровеносными сосудами, а с нервной системой – несколькими нервными окончаниями. Принцип действия очков от дальтонизма описан в .

Особенность зрения в том, что мы не видим непосредственно объект, а лишь лучи, отражающиеся от него. Дальнейшая обработка информации происходит в головном мозге, точнее его затылочной части. Лучи света изначально поступают на роговицу, а затем переходят на хрусталик, стекловидное тело и сетчатку. За восприятие лучей света отвечает естественная линза человека – хрусталик, а за его восприятие ответственна светочувствительная оболочка – сетчатка. Она имеет сложное строение, в котором выделяют 10 различных слоев клеток. Среди них особенно важными являются колбочки и палочки, которые неравномерно распределены по всему слою. Именно колбочки являются необходимым элементом, который отвечает за цветовое зрение человека. Про дальтонизм у женщин можно узнать .

Наибольшая концентрация колбочек отмечается в центральной ямке – воспринимающей изображения области в желтом пятне. В ее пределах плотность колбочек достигает 147 тыс. на 1 мм 2 .

Цветовое восприятие

Человеческий глаз является самой сложной и совершенной зрительной системой среди всех млекопитающих. Он способен воспринимать более 150 тыс. различных цветов и их оттенков. Восприятие цвета возможно благодаря колбочкам – специализированным фоторецепторам, расположенным в желтом пятне. Вспомогательную роль выполняют палочки – клетки, отвечающие за сумеречное и ночное зрение. Воспринимать весь цветовой спектр возможно с помощью всего трех видов колбочек, каждый их которых восприимчив к определенному участку цветовой гаммы (зеленый, синий и красный) за счет содержания в них йодопсина. У человека с полноценным зрением имеется 6-7 млн. колбочек, а если их количество меньше или имеются патологии в их составе, возникают различные нарушения цветовосприятия.

Строение глаза

Зрение мужчины и женщин существенно отличается. Доказано, что женщины способы распознавать больше различных оттенков цветов, в то время как представители сильного пола обладают лучшей способностью распознавать движущиеся предметы и дольше удерживать концентрацию на конкретном объекте.

Отклонения цветового зрения

Аномалии цветового зрения – редкая группа офтальмологических нарушений, которая характеризуется искажением восприятия цветов. Практически всегда эти заболевания передаются по наследству по рецессивному типу. С физиологической точки зрения все люди являются трихроматами – для полного различения цвета используют три части спектра (синий, зеленый и красный), но при патологии нарушается пропорция цветов или какой-то из них полностью или частично выпадает. Дальтонизм является лишь частным случаем патологии, при котором наблюдается полная или частичная слепота к какому-либо цвету.

Выделяют три группы аномалий цветового зрения:

  • Дихроматизм или дихромазия. Патология заключается в том, что для получения любого цвета используются только два участка спектра. Существует , в зависимости от выпадающего участка цветовой палитры. Наиболее часто встречается дейтеранопия – невозможность воспринимать зеленый цвет;
  • Полная цветовая слепота. Встречается лишь у 0,01% всех людей. Существует две разновидности патологии: ахроматопсия (ахромазия), при которой полностью отсутствует пигмент в колбочках на сетчатке, а любые цвета воспринимаются как оттенки серого, и колбочковая монохромазия – разные цвета воспринимаются одинаково. Аномалия является генетической и связана с тем, что в составе цветовых фоторецепторов вместо йодопсина содержится родопсин;

Любые цветовые отклонения являются причиной множества ограничений, например, для вождения транспортных средств или службы в армии. В некоторых случаях аномалии цветовосприятия являются поводом получения инвалидности по зрению.

Определение и виды дальтонизма

Одна из самых частых патологий восприятия цвета, которая имеет генетическую природу или развивается на фоне . Существует полная (ахромазия) или частичная невозможность (дихромазия и монохромазия) воспринимать цвета, подробнее патологии описаны выше.

Традиционно выделяют несколько видов дальтонизма в форме дихромазии, в зависимости от выпадения участка цветового спектра.

  • Протанопия. Возникает цветовая слепота красного участка спектра, встречается у 1% мужчин и у менее 0,1% женщин;
  • Дейтеранопия. Из воспринимаемой гаммы цветов выпадает зеленый участок спектра, встречается чаще всего;
  • Тританопия. Невозможность различать оттенки цветов сине-фиолетовой гаммы, плюс к этому нередко наблюдается отсутствие сумеречного зрения из-за нарушений работы палочек.

Отдельно выделяют трихромазию. Это редкий вид дальтонизма, при котором человек различает все цвета, но из-за нарушения концентрации йодопсина происходит искажение цветовосприятия. Особенную сложность люди с этой аномалией испытывают при интерпретации оттенков. Кроме того, нередко наблюдается эффект гиперкомпенсации при этой патологии, например, при невозможности отличить зеленый и красный цвет возникает улучшенное различение оттенков цвета хаки. Узнайте также про сумеречное зрение по .

Виды дальтонизма

Аномалия носит имя Дж. Дальтона, который описал заболевание еще в 18 веке. Большой интерес к болезни связан с тем, что сам исследователь и его братья страдали от протанопии.

Тест на определение дальтонизма

В последние годы для определения аномалий цветовосприятия применяются , которые представляют собой изображения цифр и фигур, нанесенные на подобранный фон при помощи различных по диаметру кругов. Всего разработано 27 картинок, каждая из которых имеет определённую цель. Плюс к этому, в стимульном материале имеются специальные изображения для выявления симулирования заболевания, поскольку тест является важным при прохождении некоторых профессиональных медицинских комиссий и при постановке на воинский учет. Интерпретацию теста должен проводить только специалист, поскольку анализ результатов – довольно сложный и трудоемкий процесс. Тест на цветовую слепоту можно пройти в статье

Выводы

Зрение человека – сложный и многогранный процесс, за который отвечает множество элементов. Любые аномалии восприятия окружающего мира не только снижают качество жизни, но могут быть угрозой для жизни в некоторых ситуациях. Большинство зрительных патологий являются врожденными, поэтому при диагностировании у ребенка отклонения нужно не только пройти необходимое лечение и грамотно подобрать корректирующую оптику, но и научить его жить с этой проблемой.

Вызывает ощущение красного и оранжевого цвета, средневолновое - желтого и зеленого, коротковолновое - голубого, синего и фиолетового. Цвета разделяют на хроматические и ахроматические. Хроматические цвета обладают тремя основными качествами: цветовым тоном, который зависит от длины волны светового излучения; насыщенностью, зависящей от доли основного цветового тона и примесей других цветовых тонов; яркостью цвета, т.е. степенью близости его к белому цвету. Различное сочетание этих качеств дает большое разнообразие оттенков хроматического цвета. Ахроматические цвета (белый, серый, черный) различаются лишь яркостью. При смешении двух спектральных цветов с разной длиной волны образуется результирующий цвет. Каждый из спектральных цветов имеет дополнительный цвет, при смешении с которым образуется цвет - белый или серый. Многообразие цветовых тонов и оттенков может быть получено оптическим смешением всего трех основных цветов - красного, зеленого и синего. Количество цветов и их оттенков, воспринимаемых глазом человека, необычайно велико и составляет несколько тысяч.

Цвет оказывает воздействие на общее психофизиологическое состояние человека и в известной мере влияет на его . Наиболее благоприятное влияние на оказывают малонасыщенные цвета средней части видимого спектра (желто-зелено-голубые), так называемые оптимальные цвета. Для цветовой сигнализации используют, наоборот, насыщенные (предохранительные) цвета.

Физиология Ц. з. недостаточно изучена. Из предложенных гипотез и теорий наибольшее распространение получила трехкомпонентная теория, основные положения которой впервые были высказаны М.В. Ломоносовым в 1756 г., а в дальнейшем развиты Юнгом (Т. Young, 1802) и Гельмгольцем (Н. L.F. Helmholtz, 1866) и подтверждены данными современных морфофизиологических и электрофизиологических исследований. Согласно этой теории в сетчатке глаза имеется три вида воспринимающих рецепторов, расположенных в колбочковом аппарате сетчатки, каждый из которых возбуждается преимущественно одним из основных цветов - красным, зеленым или синим, однако в определенной степени реагирует и на другие цвета. Изолированное одного вида рецепторов вызывает ощущение основного цвета. При равном раздражении всех трех видов рецепторов возникает ощущение белого цвета. В глазу происходит первичный спектра излучения рассматриваемых предметов с раздельной оценкой участия в них красной, зеленой и синей областей спектра. В коре головного мозга происходит окончательный анализ и светового воздействия. В соответствии с трехкомпонентной теорией Ц. з. нормальное цветоощущение называется нормальной трихромазией, и лица с нормальным Ц. з. - нормальными трихроматами.

Одной из характеристик цветового зрения является цветоощущения - способность глаза воспринимать цветовой определенной яркости. На цвета оказывает влияние сила цветового раздражителя и цветовой . Для цветоразличения имеет значение окружающего фона. Черный усиливает яркость цветных полей, но в то же время несколько ослабляет цвет. На цветовосприятие объектов существенно влияет также цветность окружающего фона. Фигуры одного и того же цвета на желтом и синем фоне выглядят по-разному (явление одновременного цветового контраста). Последовательный цветовой контраст проявляется в видении дополнительного цвета после воздействия на основного. Например, после рассматривания зеленого абажура лампы белая бумага вначале кажется красноватой. При длительном воздействии цвета на глаз отмечается снижение цветовой чувствительности сетчатки (цветовое ) вплоть до такого состояния, когда два разных цвета воспринимаются как одинаковые. Это явление наблюдается у лиц с нормальным Ц. з. и является физиологическим, однако при поражении желтого пятна сетчатки, невритах и атрофии зрительного нерва явления цветового утомления наступают быстрее.

Нарушения Ц. з. могут быть врожденными и приобретенными. Врожденные расстройства цветового зрения наблюдаются чаще у мужчин. Они, как правило, стабильны и проявляются понижением чувствительности преимущественно к красному или зеленому цвету. В группу лиц с начальными нарушениями цветового зрения относят и тех, кто различает все главные цвета спектра, но имеет пониженную цветовую , т.е. повышенные пороги цветоощущения. Согласно классификации Криса - Нагеля, все врожденные расстройства Ц. з. включают три вида нарушений; аномальную трихромазию, дихромазию и монохромазию. При аномальной трихромазии, которая встречается наиболее часто, наблюдается ослабление восприятия основных цветов: красного - , зеленого - , синего - . Дихромазия характеризуется более глубоким нарушением Ц. з., при котором полностью отсутствует восприятие одного из трех цветив: красного (), зеленого () или синего (). ( , ахроматопсия) означает отсутствие цветового зрения или цветовую слепоту, при которой сохраняется лишь черно-белое восприятие. Все врожденные расстройства Ц. з. принято называть дальтонизмом, по имени английского ученого Дальтона (J. Dalton), страдавшего нарушением восприятия красного цвета и описавшего это явление. Врожденные нарушения Ц. з. не сопровождаются расстройством других зрительных функций и выявляются лишь при специальном исследовании.

Приобретенные расстройства Ц. з. встречаются при заболеваниях сетчатки, зрительного нерва или ц.н.с.; они могут наблюдаться в одном или обоих глазах, обычно сопровождаются нарушением восприятия трех основных цветов сочетаются с другими расстройствами зрительных функций. Приобретенные расстройства Ц. з. могут проявляться также в виде ксантопсии (Ксантопсия), эритропсии (Эритропсия) и цианопсии (восприятие предметов в синем цвете, наблюдающееся после удаления хрусталика при катаракте). В отличие от врожденных нарушений, имеющих постоянный , приобретенные расстройства Ц. з. исчезают с устранением их причины.

Исследование Ц. з. проводят преимущественно лицам, профессия которых требует нормального цветоощущения, например занятых на транспорте, в некоторых отраслях промышленности, военнослужащих отдельных родов войск. С этой целью применяют две группы методов - пигментные с использованием цветных (пигментных) таблиц и различных тест-объектов, например кусочков картона разного цвета, и спектральные (с помощью аномалоскопов). Принцип исследования по таблицам основан на различении среди фоновых кружочков одного цвета цифр или фигур, составленных из кружков той же яркости, но другого цвета. Лица с расстройством Ц. з., различающие в отличие от трихроматов, объекты только по яркости, не могут определить предъявляемые фигурные или цифровые изображения (рис. ). Из цветных таблиц наибольшее распространение получили Рабкина, основная группа которых предназначена для дифференциальной диагностики форм и степени врожденных расстройств Ц. з. и отличия их от приобретенных. Существует также контрольная группа таблиц - для уточнения диагноза в сложных случаях.

При выявлении нарушений Ц. з. используют также стооттеночный тест Фарнсуорта - Мензелла, основанный на плохом различении цвета протанопами, дейтеранопами и тританопами в определенных участках цветового круга. испытуемого требуется расположить в порядке оттенков ряд кусочков картона разного цвета в виде цветового круга; при нарушении Ц. з. кусочки картона располагаются неправильно, т.е. не в том порядке, в каком они должны следовать друг за другом. Тест обладает высокой чувствительностью и дает информацию о типе нарушения цветового зрения. Используется также упрощенный тест, в котором используют всего 15 цветных тест-объектов.

Более тонким методом диагностики расстройств Ц. з. является - исследование с помощью специального прибора аномалоскопа. Принцип работы прибора основан на трехкомпонентности Ц. з. Сущность метода заключается в уравнении цвета двухцветных тестовых полей, из которых одно освещается монохроматическим желтым цветом, а второе, освещаемое красным и зеленым, может менять цвет от чисто-красного до чисто-зеленого. Обследуемый должен подобрать путем оптического смешения красного и зеленого желтый цвет, соответствующий контрольному (уравнение Релея). с нормальным Ц. з. правильно подбирает цветовую пару смешением красного и зеленого. Человек с нарушением Ц. з. с этой задачей не справляется. Метод аномалоскопии позволяет определить порог Ц. з. раздельно для красного, зеленого, синего цвета, выявить нарушения Ц. з., диагностировать цветоаномалии. Степень нарушения цветоощущения выражается коэффициентом аномальности, который показывает соотношения зеленого и красного цветов при уравнении контрольного поля прибора с тестовым. У нормальных трихроматов коэффициент аномальности колеблется от 0,7 до 1,3, при протаномалии он меньше 0,7, при дейтераномалии - больше 1,3.

Библиогр.: Луизов А. В. Цвет и , Л., 1989, биолиогр.; Многотомное руководство по глазным болезням под ред. В.Н. Архангельского, т. 1, кн. 1, с. 425, М., 1962; Пэдхем Ч. и Сондерс Дж. света и цвета, . с англ., М., 1978; Соколов Е.Н. и Измайлов Ч.А. , М., 1984, библиогр.

С помощью зрения человек различает цвета, формы, размеры наблюдаемых объектов. Глаза располагаются в глазницах черепа. Движение глазных яблок обеспечивают мышцы, прикрепляющиеся к их наружной поверхности. С помощью век, ресниц и слёзной железы обеспечивается защита глаз от инородных мелких частиц. Брови, расположенные над глазами, предохраняют их от попадания пота.

Фото 1 из презентации «Гигиена зрения» к урокам биологии на тему «Зрение»

Размеры: 16 х 16 пикселей, формат: png. Чтобы бесплатно скачать фотографию для урока биологии, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа фотографий на уроках Вы также можете бесплатно скачать всю презентацию «Гигиена зрения» со всеми фотографиями в zip-архиве. Размер архива - 1747 КБ.

Скачать презентацию

Зрение

«Лучше один раз увидеть» - Какой цвет самый любимый? Одну ягоду беру, на другую смотрю, третью примечаю, четвертая МЕРЕЩИТСЯ. Доверяй, но проверяй! Какие части глаза самые важные? Какой орган дает больше всего информации? Лучше один раз увидеть? С помощью чего человек получает информацию? Сетчатка. Доверяй, но проверяй. Сердце.

«Зрение» - Нарушения зрения у школьников. Ход лучей света в глазу при дальнозоркости. Берегите зрение! Упражнение на укрепление глазодвигательных мышц. Общеразвивающие упражнения Специальные упражнения: Ход лучей света в глазу при близорукости. Коррекция гиперметропии (дальнозоркости) производится выпуклыми стеклами.

«Иллюзии» - Иллюзия Эббингауза-Титченера (1902) Иллюзия контраста. Все представленные здесь картинки абсолютно статичны. И белые? Серый круг вокруг точки начнёт исчезать. Смотри на черную точку в центре несколько секунд. Но на рисунке только белые точки. Сколько человек ты видишь на картине? Чёрные. Иллюзия Ястрова (1891).

«Глаз» - Вспомогательный аппарат глаза: Мышцы глазного яблока Брови, веки с ресницами Слезный аппарат. Человеческий глаз воспринимает световые волны определенной длины – от 390 до 760 нм. Проект «Берегите зрение!». Колбочки – рецепторы, различающие синий, зеленый и красный цвета - 7 млн. Оптическая система глаза: Светопреломляющий аппарат (роговица – радужная оболочка – хрусталик – стекловидное тело).

«Оптические системы» - 16. 13. Микроскопы. 2. 10. Специализация «Проектирование оптических систем». 14. Специальность и специализация. 7. Фотоаппараты. 3. 6. 5. 11. Специализация «Компьютерная оптика».

«Оптическая система глаза» - Самый важный прибор. Единица измерения: 1 диоптрия (дптр). Смотреть вдаль прямо перед собой 2-3 сек. Ход лучей в собирающей линзе. Быстрые моргания в течение 1-2 мин. Ход лучей через линзы. Крепко зажмурить глаза на 3-5 сек, а затем открыть глаза. Повторить 6-8 раз. Оптика – наука, которая возникла в древности и была связана с практическими нуждами.

Всего в теме 18 презентаций

Цвет — одно из свойств объектов материального мира, воспринимаемое как зрительное ощущение. Зрительные ощущения возникают под действием на органы зрения света — электромагнитного излучения видимого диапазона спектра. Диапазон длины волны зрительных ощущений (цвета) находится в пределах 380-760 мкм. Физические свойства света тесно связаны со свойствами вызываемого ими ощущения: с изменением мощности света меняется яркость цвета излучателя или светлота цвета окрашенных поверхностей и сред. С изменением длины волны меняется цветность, которая идентична с понятием цвета, ее мы определяем словами «синий», «желтый», «красный», «оранжевый» и пр.

Характер ощущения цвета зависит как от суммарной реакции чувствительных к цвету рецепторов глаза человека, так и от соотношения реакций каждого из трех типов рецепторов. Суммарная реакция чувствительных к цвету рецепторов глаза определяет светлоту, а соотношение ее долей — цветность (цветовой тон и насыщенность). Характеристиками цвета являются цветовой тон, насыщенность и яркость или светлота.

А.С.Пушкин определил цвет как «очей очарованье», а ученый Шредингер — как «интервал излучений в световом диапазоне, который глаз воспринимает одинаково и определяет как цвет словами “красный”, “зеленый”, “синий” и т.д.».

Таким образом, глаз интегрирует (суммирует) определенный интервал световых излучений и воспринимает их как единое целое. Ширина этого интервала зависит от множества факторов, в первую очередь — от уровня адаптации глаза.

Цвет как феномен зрения и объект изучения

Цвет — деяние света,
деяние и страдательные состояния.

И.В.Гёте

Цвет сообщает вещам и явлениям форму, объем и эмоциональность при их восприятии. У большинства биологических видов световые рецепторы локализованы в области сетчатки глаза. Усложнение светового анализатора происходило по мере развития биологической линии. Высшее достижение природы — зрение человека.

С возникновением цивилизации роль цвета возросла. Искусственные источники света (излучатели с ограниченным спектром электромагнитного излучения энергии) и краски (чистый бесконечный цвет) можно рассматривать как искусственные средства синтеза цвета.

Человек всегда пытался овладеть способностью влиять на свое душевное состояние через цвет и использовать цвет для создания комфортной среды обитания, а также в различных изображениях. Первые способы применения цвета в ритуальной практике связаны с их символической функцией. Позже с помощью цветов стали отображать воспринимаемую реальность и визуализировать абстрактные понятия.

Наивысшим достижением в овладении цветом является изобразительное искусство, использующее экспрессивные, импрессивные и символические цвета.

Глаз и ухо человека воспринимают излучения по-разному

По гипотезе Юнга-Гельмгольца наши глаза обладают тремя независимыми светочувствительными рецепторами, реагирующими соответственно на красный, зеленый и синий цвета. Когда окрашенный свет попадает в глаз, эти рецепторы возбуждаются в соответствии с интенсивностью действующего на них цвета, содержащегося в наблюдаемом свете. Любая комбинация возбужденных рецепторов вызывает определенное цветовое ощущение. Области чувствительности трех этих рецепторов частично перекрываются. Поэтому одно и то же цветовое ощущение может быть вызвано различными комбинациями окрашенных световых излучений. Глаз человека постоянно суммирует раздражения, и конечным результатом восприятия оказывается суммарное действие. Необходимо также отметить, что человеку очень трудно, а иногда и невозможно определить, видит он источник света или объект, отражающий свет.

Если глаз можно считать совершенным сумматором, то ухо является совершенным анализатором и обладает фантастической способностью разлагать и анализировать колебания, образующие звук. Ухо музыканта без малейшего затруднения различает, на каком инструменте берется определенная нота, например на флейте или на фаготе. Каждый из этих инструментов имеет четко выраженный, свой тембр. Однако если звуки этих инструментов подвергнуть анализу с помощью соответствующего акустического устройства, то обнаружится, что комбинации обертонов, испускаемые этими инструментами, незначительно отличаются друг от друга. На основе только приборного анализа сложно безошибочно сказать, с каким инструментом мы имеем дело. На слух инструменты различаются безошибочно.

По своей чувствительности глаз и ухо значительно превосходят самые современные электронные устройства. При этом глаз сглаживает мозаичность структуры света, а ухо различает шорохи (вариации тона).

Если бы глаз был таким же анализатором, как и ухо, то, например, белая хризантема представлялась бы нам хаосом цветов, фантастической игрой всех цветов радуги. Объекты представали бы перед нами в различных оттенках (тембрах цвета). Зеленый бере т и зеленый лист, которые обычно кажутся нам одинакового зеленого цвета, были бы окрашенными в различные цвета. Дело в том, что глаз человека дает одно и то же ощущение зеленого цвета от различных комбинаций исходных окрашенных световых пучков. Гипотетический глаз, обладающий аналитической способностью, немедленно обнаружил бы эти различия. Но реальный глаз человека суммирует их, а одна и та же сумма может иметь множество различных слагаемых.

Известно, что белый свет состоит из целой гаммы цветов — спектров излучения. Мы называем его белым потому, что глаз человека не в состоянии разложить его на отдельные цвета.

Поэтому в первом приближении можно считать, что объект, например красная роза, имеет такую окраску потому, что отражает только красный цвет. Какой-то другой предмет, например зеленый лист, видится зеленым потому, что выделяет из белого света зеленый цвет и отражает только его. Однако на практике ощущение цвета связано не только с избирательным (селективным) отражением (пропусканием) объектом падающего или излучаемого света. Воспринимаемый цвет сильно зависит от цветового окружения объекта, а также от сущности и состояния воспринимающего.

Цвет можно только видеть

Когда человек не имеет отношения к видению, вещи выглядят в основном одними и теми же в то время, когда он смотрит на мир. С другой стороны, когда он научится видеть, ничто не будет выглядеть тем же самым все то время, что он видит эту вещь, хотя она остается той же самой.

Карлос Кастанеда

Цвета, являющиеся результатом действия физических световых стимулов, обычно видятся по-разному при различном составе стимула. Однако цвет зависит также от целого ряда других условий, таких как уровень адаптации глаза, структура и степень сложности поля зрения, состояние и индивидуальные особенности смотрящего. Количество возможных комбинаций из отдельных стимулов мозаичности излучений света значительно больше количества различных цветов, которое приблизительно оценивается в 10 млн.

Из этого следует, что любой воспринятый цвет может быть генерирован большим числом стимулов с различным спектральным составом. Это явление называется метамеризм цвета. Так, ощущение желтого цвета может быть получено под действием либо монохроматического излучения с длиной волны около 576 нм, либо сложного стимула. Сложный стимул может состоять из смеси излучения с длиной волны более 500 нм (цветная фотография, полиграфия) или из сочетания излучения с длиной волны, соответствующей зеленому либо красному цветам, при этом желтая часть спектра полностью отсутствует (телевидение, монитор компьютера).

Как человек видит цвет, или Гипотеза C (B+G) + Y (G+R)

Человечеством создано много гипотез и теорий о том, как человек видит свет и цвет, некоторые из которых были рассмотрены выше.

В этой статье сделана попытка на базе изложенных выше технологий цветоделения и печати, применяемых в полиграфии, дать объяснение цветовому зрению человека. В основе гипотезы лежит положение о том, что глаз человека не является источником излучения, а работает как окрашенная поверхность, освещаемая светом, и спектр света разделен на три зоны — синюю, зеленую и красную. Сделано допущение, что в глазу человека имеется множество приемников света одного типа, из которых состоит мозаичная поверхность глаза, воспринимающая свет. Принципиальная структура одного из приемников показана на рисунке.

Приемник состоит из двух частей, работающих как единое целое. Каждая из частей содержит пару рецепторов: синий и зеленый; зеленый и красный. Первая пара рецепторов (синий и зеленый) завернута в пленку голубого цвета, а вторая (зеленый и красный) — в пленку желтого цвета. Эти пленки работают как светофильтры.

Рецепторы связаны между собой проводниками световой энергии. На первом уровне синий рецептор связан с красным, синий — с зеленым, а зеленый — с красным. На втором уровне эти три пары рецепторов связаны в одной точке («соединение звездой», как при трехфазном токе).

Схема работает по следующим принципам:

Голубой светофильтр пропускает синие и зеленые лучи света и поглощает красные;

Желтый светофильтр пропускает зеленые и красные лучи и поглощает синие;

Рецепторы реагируют только на одну из трех зон спектра света — на синие, зеленые или красные лучи;

На зеленые лучи реагируют два рецептора, которые находятся за голубым и желтым светофильтрами, поэтому чувствительность глаза в зеленой зоне спектра выше, чем в синей и красной (это соответствует экспериментальным данным о чувствительности глаза;

В зависимости от интенсивности падающего света в каждой из трех связанных между собой пар рецепторов возникнет энергетический потенциал, который может быть положительным, отрицательным или нулевым. При положительном или отрицательном потенциале пара рецепторов передает информацию об оттенке цвета, в котором преобладает излучение одной из двух зон. Когда энергетический потенциал создан только за счет световой энергии одного из рецепторов, то должен воспроизводиться один из однозональных цветов — синий, зеленый или красный. Нулевой потенциал соответствует равным долям излучений каждой из двух зон, что дает на выходе один из двухзональных цветов: желтый, пурпурный или голубой. Если все три пары рецепторов имеют нулевой потенциал, то должен воспроизводиться один из уровней серого (от белого до черного) в зависимости от уровня адаптации;

Когда энергетические потенциалы в трех парах рецепторов разные, то в точке серого должен воспроизводиться цвет с преобладанием одного из шести цветов — синего, зеленого, красного, голубого, пурпурного или желтого. Но этот оттенок будет или разбеленным, или зачерненным, в зависимости от общего уровня световой энергии для всех трех рецепторов. Таким образом, воспроизведенный цвет будет всегда содержать ахроматическую составляющую (уровень серого). Этот уровень серого, усредненный для всех приемников глаза, и будет определять адаптацию (чувствительность) глаза к условиям восприятия;

Если в большинстве приемников глаза в течение долгого времени возникают небольшие энергетические потенциалы (соответствующие слабым оттенкам цвета или слабохроматическим цветам, близким к ахроматическим), то они будут выравниваться и дрейфовать к серому или к преобладающему памятному цвету. Исключением являются случаи, когда используется сравнительный эталон цвета или эти потенциалы соответствуют памятному цвету;

Нарушения в цвете фильтров, в чувствительности рецепторов или в проводимости цепей будут приводить к искажению восприятия световой энергии, а следовательно, к искажению воспринимаемого цвета;

Сильные энергетические потенциалы, возникающие при длительном воздействии световой энергии большой мощности, могут вызвать восприятие дополнительного цвета при переводе взгляда на серую поверхность. Дополнительные цвета: к желтому — синий, к пурпурному — зеленый, к голубому — красный и наоборот. Эти эффекты возникают вследствие того, что должно произойти быстрое выравнивание энергетического потенциала в одной из трех точек схемы.

Таким образом, при помощи простой энергетической схемы, включающей три разных рецептора, один из которых дублируется, и два пленочных светофильтра, можно моделировать восприятие любого оттенка окрашенного спектра света, который видит человек.

В данной модели восприятия цвета человеком учитывается только энергетическая составляющая спектра света и не принимаются в расчет индивидуальные особенности человека, его возраст, профессия, эмоциональное состояние и многие другие факторы, которые влияют на восприятие света.

Цвет без света

Открыла мне моя душа и научила прикасаться к тому, что не облеклось плотью и не кристаллизовалось. И позволила она уразуметь, что чувственное есть половина мысленного и то, что мы держим в руках, — часть вожделенного нами.

Дж. Х. Джебран

Цвет возникает в результате восприятия глазом светового электромагнитного излучения и преобразования информации об этом излучении человеческим мозгом. Хотя и считается, что электромагнитное световое излучение — единственный возбудитель ощущения цвета, но цвет можно увидеть и без непосредственного воздействия света — цветовые ощущения свободно могут возникать в мозге человека. Пример — цветные сны или галлюцинации, вызванные воздействием на организм химических веществ. В абсолютно темном помещении мы видим перед глазами разноцветное мерцание, словно наше зрение вырабатывает в отсутствие внешних стимулов какие-то случайные сигналы.

Следовательно, как уже было замечено, цветовой стимул определен как адекватный стимул восприятия цвета или света, но он — не единственно возможный.

Как видит человек?

Зрение человека - очень сложный многоуровневый процесс обработки изображений окружающих объектов, дающий возможность получить информацию об их форме, величине, цвете и расположении. Зрение следует рассматривать с точки зрения оптики, физиологии и психологии. Поэтому в двух словах объяснить, как видит человек, вряд ли возможно. Рассмотрим этот процесс подробно.

Оптическая природа зрения человека


Основными оптическими органами зрительной системы человека являются глаза, которые имеющимися в них фоторецепторами воспринимают лучи света, отраженные от различных предметов. Происходит это следующим образом: попадая в глаз через зрачок, лучи преломляются в хрусталике и падают на сетчатку, которая выстилает глазное дно. Именно в сетчатке и находятся особые клетки, которые способны воспринимать свет. Попадая на них, фотоны света вызывают в рецепторах ряд химических изменений, создавая тем самым нервные импульсы, которые по зрительным нервам передаются в головной мозг. В зрительном центре, который расположен в коре мозга, полученная закодированная информация расшифровывается, обрабатывается, в результате этого процесса и формируется изображение, которое мы видим.

Как видит человек: физиологическая точка зрения


  • Хрусталик располагается напротив зрачка внутри глазного яблока и является маленькой двояковыпуклой биологической линзой, в которой преломляются лучи света. У здорового человека хрусталик очень эластичен и может менять свою преломляющую способность на целых 14 диоптрий. Это позволяет человеку одинаково четко видеть те предметы, что находятся у него буквально под носом, и те, которые удалены на большое расстояние. Минимальное расстояние, на котором мы можем хорошо рассмотреть предмет, приблизительно равно пяти сантиметрам, а максимальное сильно зависит от количества света, испускаемого объектом. Ученые утверждают, что фигуру человека можно различить на расстоянии трех километров, а пламя горящей свечи видно аж за семь километров. Иногда бывает так, что хрусталик теряет свою способность к аккомодации и не может правильно фокусировать изображение на сетчатке глаза. Если фокус изображения оказывается позади сетчатки, у человека диагностируют дальнозоркость, а если перед сетчаткой - то близорукость. Сейчас эти дефекты легко корректируются с помощью очков или контактных линз.
  • Сетчатка глаза покрывает примерно 70% всей площади внутренней поверхности глазного яблока. Именно в ней расположены все светочувствительные клетки, подразделяющиеся на колбочки и палочки. Палочки ответственны за работу механизма ночного зрения. С помощью них человек может видеть в полутьме, но изображение, которое они обеспечивают, лишено цвета и напоминает картинку на экране черно-белого телевизора. Колбочки же активны при более интенсивном освещении и отвечают за дневное зрение, которое позволяет нам видеть цвет всех предметов.;

Как человек видит мир в цвете


В сетчатке находится три вида колбочек - рецепторов цвета, максимально чувствительных соответственно к красному, синему и зеленому участкам спектра. Соответствие колбочек этим трем основным цветам обеспечивает человеку возможность распознавать тысячи различных оттенков цвета. Если же в сетчатке из-за недостатка определенного вида палочек появляется проблема с восприятием одного из базовых цветов, у человека возникает недостаток зрения, называемый дальтонизмом. Он не видит определенную группу оттенков, и все они ему кажутся серыми. Теперь, когда мы рассказали о том, как видит человек, настало время поговорить об основных свойствах его зрения.

Основные свойства зрения человека

Стереоскопическое зрение

Помимо цвета, человек также способен видеть объем пространства. Достигается это за счет эффекта слияния изображения при взгляде на предмет двумя глазами. Такое зрение по-научному называется бинокулярным.

Световая чувствительность

Способность человеческого глаза распознавать различные степени яркости светового излучения называют светоощущением. Максимальная чувствительность глаза к свету достигается после длительной адаптации к темноте. Считается, что продолжительный взгляд на красный свет может повысить световую чувствительность глаз на некоторое время.

Острота зрения

Способность разных людей видеть различное количество деталей одного и того же предмета с одинакового расстояния называется остротой зрения. Острота зрения в основном предопределена генетически и зависит от возраста человека, ширины его зрачка, эластичности хрусталика и количества и величины колбочек, расположенных в сетчатке глаза.