Экономико-математические методы и моделирование. Экономико-математические методы и модели

ЛЕКЦИИ

По дисциплине:

Экономико-математические

методы и модели

ПРЕПОДАВАТЕЛЬ МАЦНЕВ А.П.

Москва 2004 год

1. Моделирование экономических систем.

Основные понятия и определения

1.1. Возникновение и развитие системных представлений

1.2. Модели и моделирование. Классификация моделей

1.3. Виды подобия моделей

1.4. Адекватность моделей

2. МАТЕМАТИЧЕСКИЕ МОДЕЛИ И МЕТОДЫ ИХ РАСЧЕТА

2.1. Понятие операционного исследования

2.2. Классификация и принципы построения математических моделей

3. Некоторые сведения из математики

3.1. Выпуклые множества

3.2. Линейные неравенства

3.3. Значения линейной формы на выпуклом множестве

4. ПРИМЕРЫ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

4.1. Транспортная задача

4.2. Общая формулировка задачи линейного программирования

4.3. Графическая интерпретация решения задач линейного программирования

5. МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

5.1. Общая и основная задачи линейного программирования

5.2. Геометрический метод решения задач линейного программирования

5.3. Графическое решение задачи распределения ресурсов

5.4. Симплексный метод

5.5. Анализ симплекс-таблиц

5.6. Решение транспортных задач

6. МЕТОДЫ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

И МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ

6.1. Постановка задачи нелинейного программирования

6.2. Постановка задачи динамического программирования

Основные условия и область применения

6.3. Многокритериальная оптимизация

1. Моделирование экономических систем.

Основные понятия и определения.

1.1. Возникновение и развитие системных представлений

Научно-техническая революция привела к возникновению таких понятий, как большие и сложные экономические системы , обладающие специфическими для них проблемами. Необходимость решения таких проблем привела к появлению особых подходов и методов, которые постепенно накапливались и обобщались, образуя, в конце концов, особую науку - системный анализ.

В начале 80-х годов системность стала не только теоретической категорией, но и осознанным аспектом практической деятельности. Широко распространилось понятие того, что наши успехи связаны с тем, насколько системно мы подходим к решению возникающих проблем, а наши неудачи вызваны отсутствием системности в наших действиях. Сигналом о недостаточной системности в нашем подходе к решению какой-либо задачи является появление проблемы, разрешение же возникшей проблемы происходит, как правило, при переходе на новый, более высокий, уровень системности нашей деятельности. Поэтому системность не только состояние, но и процесс.

В различных сферах человеческой деятельности возникли различные подходы и соответствующие методы решения специфических проблем, которые получили различные названия: в военных и экономических вопросах - «исследование операций» , в политическом и административном управлении - «системный подход» , в философии «диалектический материализм» , в прикладных научных исследованиях - «кибернетика» . Позже стало ясно, что все эти теоретические и прикладные дисциплины образуют как бы единый поток, «системное движение», которое постепенно оформилось в науку, получившую название «системный анализ». В настоящее время системный анализ является самостоятельной дисциплиной, имеющей свой объект деятельности, свой достаточно мощный арсенал средств и свою прикладную область. Являясь по существу прикладной диалектикой, системный анализ использует все средства современных научных исследований - математику, моделирование, вычислительную технику и натурные эксперименты.

Самая интересная и сложная часть системного анализа - это «вытаскивание» проблемы из реальной практической задачи, отделение важного от несущественного, поиск правильной формулировки для каждой из возникающих проблем, т.е. то, что называется «постановкой задачи».

Многие довольно часто недооценивают работу, связанную с формулировкой задачи. Однако многие специалисты полагают, что «хорошо поставить задачу - значит на половину ее решить». Хотя в большинстве случаев заказчику кажется, что он уже сформулировал свою проблему, системный аналитик знает, что предлагаемая клиентом постановка задачи является моделью его реальной проблемной ситуации и неизбежно имеет целевой характер, оставаясь приблизительной и упрощенной. Поэтому необходимо проверить эту модель на адекватность, что приводит к развитию и уточнению первоначальной модели. Очень часто первоначальная формулировка изложена в терминах не тех языков, которые необходимы для построения модели.

1.2. Модели и моделирование. Классификация моделей

Первоначально моделью называли некое вспомогательное средство, объект, который в определенных ситуациях заменял другой объект. Например, манекен в определенном смысле заменяет человека, являясь моделью человеческой фигуры. Древние философы считали, что отобразить природу можно только с помощью логики и правильных рассуждений, т.е. по современной терминологии с помощью языковых моделей. Через несколько столетий девизом английского Научного общества стал лозунг: «Ничего словами!», признавались только выводы, подкрепленные экспериментально или математическими выкладками.

В настоящее время для постижения истины существует 3 пути:

теоретическое исследование;

 эксперимент;

 моделирование.

Моделью называется объект-заместитель, который в определенных условиях может заменять объект-оригинал, воспроизводя интересующие нас свойства и характеристики оригинала, причем имеет существенные преимущества:

- дешевизну;

- наглядность;

- легкость оперирования и т.п.

 В теории моделей моделированием называется результат отображения одной абстрактной математической структуры на другую - тоже абстрактную, либо как результат интерпретации первой модели в терминах и образах второй.

Paзвитие понятия модели вышло за пределы математических моделей и стало относиться к любым знаниям и представлениям о мире. Поскольку модели играют чрезвычайно важную роль в организации любой деятельности человека их можно разделить на познавательные (когницитивные) и прагматические , что соответствует делению целей на теоретические и практические .

Познавательная модель ориентирована на приближении модели к реальности, которую эта модель отображает. Познавательные модели являются формой организации и представления знаний, средством соединения новых знаний с имеющимися. Поэтому при обнаружении расхождения между моделью и реальностью встает задача устранения этого расхождения с помощью изменения модели.

Прагматические модели являются средством управления, средством организации практических действий, способом представления образцово правильных действий или их результата, т.е. являются рабочим представлением целей. Поэтомy при обнаружении расхождения между моделью и реальностью надо направить усилия на изменение реальности так, чтобы приблизить реальность к модели. Таким образом, прагматические модели носят нормативный характер, играют роль образца, под который подгоняется действительность. Примерами прагматических моделей служат планы, кодексы законов, рабочие чертежи и т.д.

Другим принципом классификации целей моделирования может служить деление моделей на статические и динамические .

 Для одних целей нам может понадобиться модель конкретного состояния объекта в определенный момент времени, своего рода «моментальная фотография» объекта. Такие модели называются статическими . Примером являются структурные модели систем.

 В тех же случаях, когда возникает необходимостъ в отображении процесса изменения состояний, требуются динамические модели систем.

В распоряжении человека имеется два типа материалов для построения моделей - средства самого сознания и средства окружающею материального мира. Соответственно этому модели делятся на абстрактные (идеальные) и материальные .

 Очевидно, что к абстрактным моделям относятся языковые конструкции и математические модели. Математические модели обладают наибольшей точностью, но чтобы дойти до их использования в данной области, необходимо получить достаточное количество знаний. По мнению Канта, любая отрасль знания может тем более именоваться наукой, чем в большей степени в ней используется математика.

1.3. Виды подобия моделей

Чтобы некоторая материальная конструкция могла быть моделью, т.е. замещала в каком-то отношении оригинал, между оригиналом и моделью должно быть установлено отношение подобия. Существуют разные способы установления такого подобия, что придает моделям особенности, специфичные для каждого способа.

 Прежде всего, это подобие, устанавливаемое в процессе создания модели. Назовем такое подобие прямым . Примером такого подобия являются фотографии, масштабированные модели самолетов, кораблей, макеты зданий, выкройки, куклы и т.д.

Следует помнить, что как бы хороша ни была модель, она все-таки лишь заменитель оригинала, только в определенном отношении. Даже тогда, когда модель прямого подобия выполнена из того же материала, что и оригинал, т.е. подобна ему субстратно, возникают проблемы переноса результатов моделирования на оригинал. Например, при испытании уменьшенной модели самолета в аэродинамической трубе задача пересчета данных модельного эксперимента становится нетривиальной и возникает разветвленная, содержательная теория подобия, позволяющая привести в соответствие масштабы и условия эксперимента, скорость потока, вязкость и плотность воздуха. Трудно достигается взаимозаменяемость модели и оригинала в фотокопиях произведений искусства, голографических изображениях предметов искусства.

 Второй тип подобия между моделью и оригиналом называется косвенным . Косвенное подобие между оригиналом и моделью объективно существует в природе и обнаруживается в виде достаточной близости или совпадения их абстрактных математических моделей и вследствие этого широко используется в практике реального моделирования. Наиболее характерным примером может служить электромеханическая аналогия между маятником и электрическим контуром.

Оказалось, что многие закономерности электрических и механических процессов описываются одинаковыми уравнениями, различие состоит в разной физической интерпретации переменных, входящих в это уравнение. Роль моделей, обладающих косвенным подобием, очень велика и роль аналогий (моделей косвенного подобия) в науке и практике трудно переоценить. Аналоговые вычислительные машины позволяют найти решение почти всякого дифференциального уравнения, представляя собой, таким образом, модель, аналог процесса, описываемого этим уравнением. Использование электронных аналогов в практике определяется тем, что электрические сигналы легко измерить и зафиксировать, что дает известные преимущества модели.

 Третий, особый класс моделей составляют модели, подобие которых оригиналу не является ни прямым, ни косвенным, а устанавливается в результате соглашения . Такое подобие называется условным. С моделями условного подобия приходится иметь дело очень часто, поскольку они являются способом материального воплощения абстрактных моделей. Примерами условного подобия служат деньги (модель стоимости), удостоверение личности (модель владельца), всевозможные сигналы (модели сообщения).

Экономико-математические методы (ЭММ) - обобщающее название комплекса экономических и математических научных дисциплин, объединенных для изучения экономики. Введено академиком В.С.Немчи­но­вым в начале 60-х годов. Встречаются высказывания о том, что это название весьма условно и не отвечает современному уровню развития экономической науки, так как «они (ЭММ. - авт.) не имеют собственного предмета исследования, отличного от пред­мета исследования специфических экономических дисциплин» .

Однако, хотя тенденция подмечена верно, она, по-видимому, реализуется еще не скоро. ЭММ в действительности имеют общий объект исследования с другими экономическими дисциплинами - экономику (или шире: социально-эко­но­ми­чес­кую систему), но разный предмет науки: т.е. они изучают разные стороны этого объекта, подходят к нему с разных позиций. И главное, при этом используются особые методы исследования, развитые настолько, что сами они становятся отдельными научными дисциплинами особого методологического характера. В отличие от дисциплин, в которых преобладают онтологические аспекты, а методы исследования выступают лишь в большей или меньшей степени как вспомогательные средства, в «методологических» дисциплинах, составляющих значительную часть комплекса ЭММ, методы сами оказываются объектом исследования. Кроме того, действительный синтез экономики и математики еще впереди, потребуется немало времени, пока он осуществится в полной мере.

Общепринятая классификация экономико-математических дисциплин, явившихся сплавом экономики, математики и кибернетики, пока не выработана. С известной долей условности ее можно представить в виде следующей схемы .

0. Принципы экономико-математических методов:

теория экономико-математического моделирования , включая экономико-статистическое моделирование;

теория оптимизации экономических процессов.

1.Математическая статистика (ее экономические приложения):

выборочный метод;

дисперсионный анализ;

корреляционный анализ;

регрессионный анализ;

многомерный статистический анализ;

факторный анализ;

теория индексов и др.

2. Математическая экономия и эконометрия:

теория экономического роста (модели макроэкномической динамики);

теория производственных функций;

межотраслевые балансы (статические и динамические);

национальные счета, интегрированные материально-финансовые балансы;

анализ спроса и потребления;

региональный и пространственный анализ;

глобальное моделирование и др.

3. Методы принятия оптимальных решений, включая исследование операций:

оптимальное (математическое) программирование;

линейное программирование;

нелинейное программирование;

динамическое программирование;

дискретное (целочисленное) программирование;

блочное программирование;

дробно-линейное программирование;

параметрическое программирование;

сепарабельное программирование;

стохастическое программирование;

геометрическое программирование;

методы ветвей и границ;

сетевые методы планирования и управления;

программно-целевые методы планирования и управления;

теория и методы управления запасами;

теория массового обслуживания;

теория игр;

теория решений;

теория расписаний.

4. ЭММ и дисциплины, специфичные для централизованно планируемой экономики:

теория оптимального функционирования социалистической экономики (СОФЭ);

оптимальное планирование:

народнохозяйственное;

перспективное и текущее;

отраслевое и региональное;

теория оптимального ценообразования;

5. ЭММ, специфичные для конкурентной экономики:

модели рынка и свободной конкуренции;

модели делового цикла;

модели монополии, дуополии, олигополии;

модели индикативного планирования;

модели международных экономических отношений;

модели теории фирмы.

6. Экономическая кибернетика:

системный анализ экономики;

теория экономической информации, включая экономическую семиотику;

теория управляющих систем, включая теорию автоматизированных систем управления.

7. Методы экспериментального изучения экономических явлений (экспериментальная экономика ):

математические методы планирования и анализа экономических экспериментов ;

методы машинной имитации и стендового экспериментирования;

«деловые игры».

В ЭММ применяются различные разделы математики, математической статистики и математической логики ; большую роль в машинном решении экономико-математических задач играют вычислительная математика, теория алгоритмов и другие смежные дисциплины.

Практическое применение ЭММ в некоторых странах приобрело массовый, в каком-то смысле рутинный характер. В тысячах компаний решаются задачи планирования производства , распределения ресурсов с помощью отработанного и часто стандартизированного программного обеспечения , установленного на компьютерах. Ведется изучение этой практики на местах- опросы, обследования.. В США даже издается специальный журнал “Interfaces”, регулярно публикующий сведения о практическом использовании ЭММ в разных отраслях экономики. Для примера, приведем резюме одной из статей этого журнала: «В 2005 и 2006 годах, компания Coca-Cola Enterprises (CCE), крупнейший производитель и дистрибьютор напитка Кока-Кола, внедрила программное обеспечение ORTEC для маршрутизации транспорта. В настоящее время свыше трехсот диспетчеров используют этот софтвер , ежедневно планируя маршруты примерно 10 000 фур. В дополнение к преодолению некоторых нестандартных ограничений, использование этой технологии примечательно прогрессивным (бесперебойным) переходом от прежней хозяйственной практики. ССЕ сумела сократить годовые издержки на 45 млн долларов и улучшить обслуживание клиентов. Этот опыт оказался настолько удачным, что (головная транснациональная компания) Кока Кола расширила его за пределы ССЕ, на другие компании по производству и распространению этого напитка, а также пива».

1. Экономико-математические методы, применяемые в анализе хозяйственной деятельности

Список использованных источников


1. Экономико-математические методы, применяемые в анализе хозяйственной деятельности

Одним из направлений совершенствования анализа хозяйственной деятельности является внедрение экономико-математических методов и современных ЭВМ. Их применение повышает эффективность экономического анализа за счет расширения изучаемых факторов, обоснования принимаемых управленческих решений, выбора оптимального варианта использования хозяйственных ресурсов, выявления и мобилизации резервов повышения эффективности производства.

Математические методы опираются на методологию экономико-математического моделирования и научно обоснованную классификацию задач анализа хозяйственной деятельности. В зависимости от целей экономического анализа различают следующие экономико-математические модели: в детерминированных моделях - логарифмирование, долевое участие, дифференцирование; в стохастических моделях - корреляционно-регрессивный метод, линейное программирование, теорию массового обслуживания, теорию графов и др.

Стохастический анализ - это метод решения широкого класса задач статистического оценивания. Он предполагает изучение массовых эмпирических данных путем построения моделей изменения показателей за счет факторов, не находящихся в прямых связях, в прямой взаимозависимости и взаимообусловленности. Стохастическая связь существует между случайными величинами и проявляется в том, что при изменении одной из них меняется закон распределения другой.

В экономическом анализе выделяются следующие наиболее типичные задачи стохастического анализа:

Изучение наличия и тесноты связи между функцией и факторами, а также между факторами;

Ранжирование и классификация факторов экономических явлений;

Выявление аналитической формы связи между изучаемыми явлениями;

Сглаживание динамики изменения уровня показателей;

Выявление параметров закономерных периодических колебаний уровня показателей;

Изучение размерности (сложности, многогранности) экономических явлений;

Количественное изменение информативных показателей;

Количественное изменение влияния факторов на изменение анализируемых показателей (экономическая интерпретация полученных уравнений).

Стохастическое моделирование и анализ связей между изученными показателями начинаются с корреляционного анализа. Корреляция состоит в том, что средняя величина одного из признаков изменяется в зависимости от значения другого. Признак, от которого зависит другой признак, принято называть факторным. Зависимый признак именуют результативным. В каждом конкретном случае для установления факторного и результативного признаков в неодинаковых совокупностях необходим анализ природы связи. Так, при анализе различных признаков в одной совокупности заработная плата рабочих в связи с их производственным стажем выступает как результативный признак, а в связи с показателями жизненного уровня или культурными потребностями - как факторный. Часто зависимости рассматривают не от одного факторного признака, а от нескольких. Для этого применяется совокупность методов и приемов выявления и количественной оценки взаимосвязей и взаимозависимостей между признаками.

При исследовании массовых общественно-экономических явлений между факторными признаками проявляется корреляционная связь, при которой на величину результативного признака влияет, помимо факторного, множество других признаков, действующих в разных направлениях одновременно или последовательно. Часто корреляционную связь называют неполной статистической или частичной в отличие от функциональной, которая выражается в том, что при определенном значении переменной (независимая переменная - аргумент) другая (зависимая переменная - функция) принимает строгое значение.

Корреляционную связь можно выявить только в виде общей тенденции при массовом сопоставлении фактов. Каждому значению факторного признака будет соответствовать не одно значение результативного признака, а их совокупность. В этом случае для вскрытия связи необходимо найти среднее значение результативного признака для каждого значения факторного.

Если зависимость прямолинейная:

.

Значения коэффициентов а и b находится из системы уравнений, полученных по способу наименьших квадратов по формуле:

, n - число наблюдений.

В случае прямолинейной формы связи между изучаемыми показателями коэффициент корреляции рассчитывается по формуле:

.

Если коэффициент корреляции возвести в квадрат, то получим коэффициент детерминации.

Дисконтирование - это процесс пересчета будущей стоимости капитала, денежных потоков или чистого дохода в настоящую. Ставка, по которой производится дисконтирование, называется ставкой дисконтирования (ставкой дисконта). Основная посылка, лежащая в основе понятия дисконтированного потока реальных денег, состоит в том, что деньги имеют временную цену, то есть сумма денег, имеющаяся в наличии в настоящее время, обладает большей ценностью, чем такая же сумма в будущем. Эта разница может быть выражена как процентная ставка, характеризующая относительные изменения за определенный период (обычно равный году).

Многие задачи, с которыми приходится сталкиваться экономисту в повседневной практике при анализе хозяйственной деятельности предприятий, многовариантны. Так как не все варианты одинаково хороши, среди множества возможных приходится отыскивать оптимальный. Значительная часть подобных задач на протяжении долгого времени решалась исходя из здравого смысла и опыта. При этом не было никакой уверенности, что найденный вариант является наилучшим.

В современных условиях даже незначительные ошибки могут привести к огромным потерям. В связи с этим возникла необходимость привлечения к анализу и синтезу экономических систем оптимизационных экономико-математических методов и ЭВМ, что создает основу для принятия научно обоснованных решений. Такие методы объединяются в одну группу под общим названием "оптимизационные методы принятия решений в экономике". Чтобы решить экономическую задачу математическими методами, прежде всего, необходимо построить адекватную ей математическую модель, то есть формализовать цель и условия задачи в виде математических функций, уравнений и (или) неравенств.

В общем случае математическая модель оптимизационной задачи имеет вид:


max (min): Z = Z(x),

при ограничениях

f i (x) Rb i , i =

,

где R - отношения равенства, меньше или больше.

Если целевая функция и функции, входящие в систему ограничений, линейны относительно входящих в задачу неизвестных, такая задача называется задачей линейного программирования. Если же целевая функция или система ограничений не линейна, такая задача называется задачей нелинейного программирования.

В основном, на практике, задачи нелинейного программирования путем линеаризации сводятся к задаче линейного программирования. Особый практический интерес среди задач нелинейного программирования представляют задачи динамического программирования, которые из-за своей многоэтапности нельзя линеаризовать. Поэтому мы рассмотрим только эти два вида оптимизационных моделей, для которых в настоящее время имеется хорошее математическое и программное обеспечение.

Метод динамического программирования представляет собой особый математический прием оптимизации нелинейных задач математического программирования, который специально приспособлен к многошаговым процессам. Многошаговым обычно считают процесс, развивающийся во времени и распадающийся на ряд "шагов", или "этапов". Однако метод динамического программирования используется и для решения задач, в которых время не фигурирует. Некоторые процессы распадаются на шаги естественным образом (например, процесс планирования хозяйственной деятельности предприятия на отрезок времени, состоящий из нескольких лет). Многие процессы можно расчленить на этапы искусственно.

Суть метода динамического программирования состоит в том, что вместо поиска оптимального решения сразу для всей сложной задачи предпочитают находить оптимальные решения для нескольких более простых задач аналогичного содержания, на которые расчленяется исходная задача.

Метод динамического программирования также характеризуется тем, что выбор оптимального решения на каждом шаге должен производиться с учетом последствий в будущем. Это означает, что, оптимизируя процесс на каждом отдельном шаге, ни в коем случае нельзя забывать обо всех последующих шагах. Таким образом, динамическое программирование - это дальновидное планирование с учетом перспективы.

Принцип выбора решения в динамическом программировании является определяющим и носит название принципа оптимальности Беллмана. Сформулируем его следующим образом: оптимальная стратегия обладает тем свойством, что, каковы бы ни были первоначальное состояние и решение, принятое в начальный момент, последующие решения должны вести к улучшению ситуации относительно состояния, являющегося результатом первоначального решения.

Таким образом, при решении оптимизационной задачи методом динамического программирования необходимо на каждом шаге учитывать последствия, к которым приведет в будущем решение, принимаемое в данный момент. Исключением является последний шаг, которым заканчивается процесс. Здесь можно принимать такое решение, чтобы обеспечить максимальный эффект. Спланировав оптимальным образом последний шаг, можно "пристраивать" к нему предпоследний так, чтобы результат этих двух шагов был оптимальным, и т.д. Именно таким образом - от конца к началу - можно развернуть процедуру принятия решений. Оптимальное решение, найденное при условии, что предыдущий шаг закончился определенным образом, называют условно-оптимальным решением.

Все модели, которые человек использует в различных сферах своей деятельности, условно можно поделить на две группы: материальные и абстрактные. Первые являются объективными, их можно реально потрогать руками. Вторые же существуют только в человеческом сознании. В рамках данной статьи будут рассмотрены лишь математические методы и модели в экономике. Они применяются для анализа процессов и явлений, происходящих в этой сфере. Их использование позволяет ставить новые экономические задачи. Благодаря ним руководство принимает решения, касающиеся управления организацией, фирмой, предприятием.

Математические операций в экономике являются самым эффективным инструментом изучения проблем в данной области. В современной научной и технической деятельности они становятся немаловажной формой моделирования. А в практике планирования и управления этот способ - основной.

Экономико-математические методы и модели являются той базой, на основе которой реализуются различные программы, изначально предназначенные для решения задач планирования, анализа и управления. Вместе с техническими средствами, с базами данных они входят в состав человеко-машинной системы. Она позволяет использовать модели и знания для решения разного рода проблем (как неконструктурированных, так и слабоконструктурированных).

В зависимости от критериев, которые лежат в основе деления, экономико-математические методы и модели классифицируются следующим образом.

1. По цели они бывают:

Прикладные, то есть с их помощью решаются конкретные задачи;

Теоретико-аналитические (они применяются, когда нужно исследовать общие закономерности и признаки развития процессов, происходящих в экономике).

2. По тому, какие причинно-следственные связи они отражают:

Детерминированные;

Вероятностные (учитывают фактор возникающей неопределенности).

3.По уровню тех процессов в экономике, которые они исследуют:

Производственные и технологические;

Социально-экономические.

4. По тому способу, которым отражается фактор времени:

Динамические, по ним видны происходящие изменения;

Статические, все зависимости здесь отражают лишь один период времени или момент.

5. По уровню детализации:

Макромодели (агрегированные);

Микромодели (детализированные).

6. По форме, в которой выражаются математические зависимости:

Нелинейные;

Линейные - их очень удобно использовать для вычисления и анализа, что привело к их более широкому распространению.

Экономико-математические методы и модели имеют и свои принципы построения. К ним относятся:

1. Принцип однозначности данных. Согласно ему информация, которая используется в начале моделирования, не должна зависеть от тех параметров будущей системы, которые на данном этапе исследования еще даже неизвестны.

2. Принцип полноты первоначальных сведений. Он означает, что используемая исходная информация должна быть очень точной, так как от нее зависят полученные результаты.

3. Принцип преемственности. Он говорит о том, что те признаки объекта, которые были отражены или установлены в первых моделях, должны сохраняться и в каждой последующей.

4. Принцип эффективной реализации. Каждая модель должна использоваться на практике. В ее реализации должны помогать новейшие вычислительные средства.

Экономико-математические методы и модели всегда строятся в несколько этапов:

1) Определение проблемы, ее анализ.

2) Конструирование Это ее выражение в виде функций, схем, уравнений.

3) Анализ полученной модели с помощью математических приемов.

4) Подготовка первоначальной информации.

5) Это уже собственно разработка программ, составление алгоритмов и проведение расчетов.

6) Анализ полученных результатов, их практическое применение.

Каждый из этих этапов может иметь свою специфику в зависимости от рассматриваемой области знаний.

Экономико-математические методы основаны на использовании корреляционного и регрессионного анализа, позволяющего устанавливать тесноту связи и вид зависимости среднего значения какой-либо величины от некоторой другой или от нескольких величин. В нашем случае - это установление зависимости развития спроса от влияния наиболее главных факторов. в практике прогнозирования товарно-групповой структуры спроса чаще всего применяются трендовые и регрессионные модели:

Трендовые модели прогнозирования спроса представляют собой уравнения, формализующие устойчивые процессы его развития. Они применяются для прогнозирования наиболее стабильных закономерностей по крупным товарным подотраслям (например, соотношение спроса на продовольственные и непродовольственные товары). Основной параметр трендовых моделей -время, то есть по существу речь также идет об экстраполяции на прогнозируемый период тенденций и закономерностей базисного периода.

Регрессионные (факторные) модели отражают количественную связь одного показателя с другим или с группой других (множественная регрессия). В качестве переменных выступают факторы, определяющие динамику спроса. Математическую основу построения моделей составляют важнейшие положения теории вероятности, математической статистики и высшей математики. Процесс построения подобных моделей состоит из нескольких последовательных этапов.

Первым и важнейшим этапом моделирования развития товарно-групповой структуры спроса населения является отбор факторов. Они должны отражать объективные процессы изучаемого явления, быть количественно измеримыми и независимыми друг от друга.

На втором этапе рассчитывается сила влияния или теснота связи между факторами и спросом в базисном периоде. Она определяется с помощью коэффициентов корреляции и критериев согласия.

На третьем этапе выявляется математическая форма связи или вид зависимости спроса от факторов, подбираются функции, наиболее точно описывается процесс развития спроса.

Четвертый этап: расчет параметров уравнения. Параметры уравнений выражают степень и направление воздействия каждого фактора на спрос и рассчитываются методом наименьших квадратов.

Пятый этап: оценка прогностической ценности модели на основе ретроспективных расчетов.

Экономико-математические методы эффективно используется при краткосрочном прогнозировании. Так как объективная реальность нашей экономики состоит в том, что довольно трудно выявить и определить количественно более менее стабильные факторы, влияющие на прогнозируемый процесс. Поэтому составление среднесрочных и, тем более, долгосрочных прогнозов представляется довольно затруднительным в современных условиях. И как правило, преобладает прогнозирование на краткосрочные периоды. Экономико-математическое моделирование является основой экономической прогностики. Оно позволяет на строго количественной основе выявить характер связей между отдельными элементами рынка и теми факторами, которые влияют на его развитие. Что особенно важно - математические модели дают возможность наблюдать, как станут развиваться события при тех или иных начальных допущениях


При экономико-математическом моделировании спроса может также использоваться группа методов - экспоненциальное сглаживание и прогнозирование, основанные на использовании уже сделанных прогнозов тенденций развития спроса и самых последних данных о продаже товаров.

Математические методы помогают вскрыть количественные явления и взаимосвязи. Но они лишь продолжение экономического анализа, конечный результат в первую очередь зависит от выбора базисного периода, отбора факторов, от того, правильно ли определена степень устойчивости явления.

Графические методы связаны геометрическим изображением функциональной зависимости при помощи линий на плоскости. С помощью координатной сетки строятся графики зависимости, например, уровня издержек от объема произведенной и реализованной продукции, а также графики, на которых можно изображать корреляционные связи между показателями (диаграммы сравнения, кривые распределения, диаграммы временных рядов, статистические картограммы).

Пример: построение сетевого графика при строительстве и монтаже предприятий. Составляется таблица работ и ресурсов, где в технологической последовательности указываются их характеристика, объем, исполнитель, сменность, потребность в материалах. Продолжительность выполнения задания и другая информация. Исходя из данных показателей, подготавливают сетевой график. Оптимизация графика осуществляется посредством сокращения критического пути, т.е. минимизации сроков выполнения работ при заданных уровнях ресурсов, минимизации уровня потребления ресурсов при фиксированных сроках выполнения работ.

Метод корреляционно-регрессивного анализа используют для определения тесноты связи между показателями, не находящимися в функциональной зависимости. Теснота связи измеряется корреляционным отношением (для криволинейной зависимости). Для прямолинейной зависимости исчисляется коэффициент корреляции. Метод применяют при решении задач на «запуск-выпуск».

Пример: определить зависимость выпуска изделий в среднем от их запуска, составив соответствующее управление регрессии.

Метод линейного программирования сводится к нахождению крайних значений (максимума и минимума) некоторых функций переменных величин. Основано на решение системы линейных уравнений, когда зависимость между явлениями строго функциональна.

Пример: задачи рациональности использования времени работы производственного оборудования.

Методы динамического программирования применяют при решении оптимизационных задач, в которых целевая функция и ограничения характеризуют нелинейными зависимостями.

Пример: заполнить транспортное средство грузоподъемностью Х грузом, состоящим из определенных предметов так, чтобы стоимость всего груза оказалась максимальной.

Математическая теория игр исследует оптимальные стратегии в ситуациях игрового характера. Решение требует определенности в формулировке условий: установления количества игроков, возможных выигрышей, определения стратегии.

Пример: максимизировать среднюю величину дохода от реализации выпущенной продукции, учитывая капризы погоды.

Математическая теория массового обслуживания.

Пример: обеспечение рабочих необходимым инструментом.

Матричный метод основан на линейной и векторно-матричной алгебре, применяется для изучения сложных и высокоразмерных структур на отраслевом уровне, ан уровне предприятий.

Пример: выявить распределение между цехами продукции, идущей на внутреннее потребление, и общие объемы выпускаемой продукции, если заданы параметры прямых затрат и конечного продукта.

Рассмотрим особенности методики экономического анализа применительно к изучению спроса на товар.

Прогнозирование спроса может осуществляться различными методами, в частности можно выделить три основные группы: методы экономико-математического моделирования (экстрополяционные методы), нормативные методы, методы экспертных оценок.

Методы простой (формальной) экстраполяции заключаются в перенесении на будущий период прошлых и настоящих тенденций в развитии товарно-групповой структуры спроса на базе анализа динамического ряда.

Для экстраполяции информацию о динамике рынка представляют в той или иной форме - графической, статистической, математической, логической. В любом случае считают, что экономическим процессам присуща «инерция» или обязательное продолжение направления их течения в ближайшем будущем. Экстраполяции требуют от исследователя рынка крайней осмотрительности. Мало изучить прошлые тенденции рынка - необходимо принять в расчет новые условия и факторы, которые не были характерны для прошлого, но возможно появятся в будущем. Одновременно необходимо избавляться от учета факторов и обстоятельств, которые потеряли свою актуальность и уже не оказывают влияния на ход развития событий на данном рынке.

Данный метод достаточно прост и доступен, однако использование его целесообразно только на такой период, в котором маловероятно изменение тенденций, то есть на краткосрочный, и для укрупненных товарных групп.

К методам простой экстраполяции относятся и расчеты эластичности спроса в зависимости от изменения какого-либо фактора.