Дыхательный коэффициент растений можно измерить с помощью. Дыхательный коэффициент (ДК). Зависимость дыхания от экологических факторов

Экскреция азота может быть использована для определения метаболизма белка. В белке содержится приблизительно 16% азота. В процессе метаболизма белка около 90% присутствующего в белке азота экскретируются с мочой в виде мочевины, мочевой кислоты, креатинина и прочих менее важных соединений, содержащих азот.

Остальные 10% экскретируются с каловыми массами , поэтому скорость распада белка в организме может быть подсчитана путем определения содержания азота в моче: к этому количеству добавляют 10% азота, экскретируемого с калом, и умножают на 6,25 (т.е. 100/16). Таким образом можно определить общее количество белка, распавшегося в организме за сутки. Так, например, экскреция 8 г азота с мочой за сутки означает, что около 55 г белка подверглись распаду. Если ежесуточное потребление белка меньше количества его распада, говорят об отрицательном азотистом балансе, что означает ежедневное уменьшение содержания белка в организме.

Дыхательный коэффициент - отношение объема выделенного СО2 к объему потребленного О2 - можно использовать для определения расхода углеводов и жиров. Если углеводы метаболизируются с использованием кислорода, то при окислении каждой молекулы углеводов образуется 1 молекула углекислого газа и расходуется 1 молекула кислорода. В этом случае отношение объема выделенной углекислоты к объему потребленного кислорода, называемое дыхательным коэффициентом, при окислении углеводов будет равно 1,0.

При окислении жиров в среднем на каждые 70 молекул образовавшегося углекислого газа приходится 100 молекул потребленного кислорода. Дыхательный коэффициент при окислении жиров составляет 0,7. При окислении только белков дыхательный коэффициент приблизительно равен 0,8. Кислород, расходуемый на окисление этих веществ, взаимодействует с атомами водорода, в избытке присутствующими в молекулах этих веществ, поэтому при использовании равных количеств кислорода образуется меньше углекислого газа.
По этой причине дыхательный коэффициент при окислении белков и жиров меньше, чем при окислении углеводов.

Рассмотрим, как можно использовать дыхательный коэффициент для определения степени использования тех или иных питательных веществ в организме. Количество углекислого газа, выделенного легкими, деленное на количество кислорода, потребленного за то же время, называют показателем легочной вентиляции. Если этот показатель отслеживать приблизительно в течение часа, показатель легочной вентиляции становится равным дыхательному коэффициенту. Приближение значения дыхательного коэффициента к 1,0 указывает на то, что в организме окислялись углеводы, т.к. дыхательный коэффициент при окислении белков и жиров значительно меньше 1,0. Если дыхательный коэффициент ближе к 0,7, то в организме окисляются только жиры.

Наконец, если не учитывать возможность окисления небольшого количества белков, то значения дыхательного коэффициента в интервале значений 0,7-1,0 могут приблизительно указывать на преобладание окисления жиров либо углеводов. Для более точного определения следует подсчитать расход белка с помощью определения количества экскретируемого азота, а затем, используя соответствующие математические формулы, почти точно рассчитать количество израсходованных жиров и углеводов.
Перечислим наиболее существенные результаты, полученные при изучении дыхательного коэффициента.

1. Сразу после приема пищи наиболее существенным субстратом окисления становятся углеводы. Дыхательный коэффициент в этот период приближается к 1,0.
2. Через 8-10 ч после приема пищи, когда организм почти использовал все имеющиеся в наличии углеводы, дыхательный коэффициент приближается к 0,7, что указывает на преобладание использования жиров.

3. При наличии нелеченного сахарного диабета очень небольшое количество углеводов может использоваться организмом в любых условиях, т.к. для их использования необходим инсулин, поэтому при тяжелом диабете дыхательный коэффициент практически всегда остается приближенным к 0,7, что характерно для преобладания окисления жиров.

1. Какой процесс обеспечивает освобождение энергии в организме? В чем его сущность?

Диссимиляция (катаболизм), т. е. распад клеточных структур и соединений организма с выделением энергии и продуктов распада.

2. Какие питательные вещества служат источником энергии в организме?

Углеводы, жиры и белки.

3. Назовите основные методы определения количества энергии в навеске продукта.

Физическая калориметрия; физико-химические методики определения количества питательных веществ в навеске с последующим расчетом содержащейся в ней энергии; по таблицам.

4. Опишите сущность способа физической калориметрии.

В калориметре сжигают навеску продукта, а затем по степени нагревания воды и материала калориметра рассчитывают выделившуюся энергию.

5. Напишите формулу расчета количества тепла, выделившегося при сгорании продукта в калориметре. Расшифруйте ее обозначения.

Q = MвСв (t 2 - t 1) + MкСк (t 2 - t 1) - Qо,

где Q - количество тепла, М – масса (в – воды, к – калориметра), (t 2 - t 1) – разность температур воды и калориметра после и до сжигания навески, С – удельная теплоемкость, Qо -количество тепла, образуемое окислителем.

6. Что называют физическим и физиологическим калорическими коэффициентами питательного вещества?

Количество тепла, освобождаемое при сгорании 1 г вещества в калориметре и в организме соответственно.

7. Сколько тепла освобождается при сгорании в калориметре 1 г белков, жиров и углеводов?

1г белков – 5, 85 ккал (24, 6 кДж), 1г жиров – 9, 3 ккал (38, 9 кДж), 1г углеводов – 4, 1 ккал (17, 2 кДж).

8. Сформулируйте закон термодинамики Гесса, на основании которого рассчитывают приход энергии в организм по количеству усвоенных белков, жиров и углеводов.

Термодинамический эффект зависит только от теплосодержания начальных и конечных продуктов реакции и не зависит от промежуточных превращений этих веществ.

9. Сколько тепла освобождается при окислении в организме 1 г белков, 1 г жиров и 1 г углеводов?

1 г белков – 4, 1 ккал (17, 2 кДж), 1 г жиров – 9, 3 ккал (38, 9 кДж), 1 г углеводов – 4, 1 ккал (17, 2 кДж).

10. Объясните причину различия физического и физиологического калорических коэффициентов для белков. В каком случае он больше?

В калориметре (физический коэффициент) белок распадается до конечных продуктов – СО 2 , Н 2 О и NН 3 c освобождением всей заключенной в них энергии. В организме (физиологический коэффициент) белки распадаются до СО 2 , Н 2 О, мочевины и др. веществ белкового обмена, которые содержат энергию и выводятся с мочой.

Определяют содержание белков, жиров и углеводов в продуктах питания, умножают их количество на соответствующие физиологические калорические коэффициенты, суммируют и из суммы вычитают 10%, что не усваивается в пищеварительном тракте (потери с калом).

12. Рассчитайте (в ккал и кДж) приход энергии при поступлении в организм с пищей по 10 г белков, жиров и углеводов.

Q = 4,110 + 9,310 + 4,110 = 175 ккал. (175 ккал – 17,5 ккал) х 4,2 кДж, где 17,5 ккал – энергия неусвоенных питательных веществ (потери с калом – около 10%). Итого: 157,5 ккал (661,5 кДж).

Калориметрия: прямая (метод Этуотера – Бенедикта); непрямая, или косвенная (методы Крога, Шатерникова, Дугласа – Холдена).

14. На чем основан принцип прямой калориметрии?

На непосредственном измерении количества тепла, выделенного организмом.

15. Опишите кратко устройство и принцип работы камеры Этуотера – Бенедикта.

Камера, в которую помещают испытуемого, термически изолирована от окружающей среды, ее стенки не поглощают тепло, внутри них находятся радиаторы, через которые течет вода. По степени нагрева определенной массы воды рассчитывают количество тепла, израсходованного организмом.

16. На чем основан принцип непрямой (косвенной) калориметрии?

На расчете количества выделившейся энергии по данным газообмена (поглощенный О 2 и выделившийся СО 2 за сутки).

17. Почему количество выделяемой организмом энергии можно рассчитать по показателям газообмена?

Потому, что количество потребленного организмом О 2 и выделенного СО 2 точно соответствует количеству окисленных белков, жиров и углеводов, а значит, и израсходованной организмом энергии.

18. Какие коэффициенты используются для расчета расхода энергии методом непрямой калориметрии?

Дыхательный коэффициент и калорический эквивалент кислорода.

19. Что называют дыхательным коэффициентом?

Отношение объема выделенного организмом углекислого газа к объему потребленного за это же время кислорода.

20. Рассчитайте дыхательный коэффициент (ДК), если известно, что во вдыхаемом воздухе содержится 17% кислорода и 4% углекислого газа.

Так как в атмосферном воздухе содержится 21% О 2 , процент поглощенного кислорода составляет 21% – 17%, т. е. 4 %. СО 2 в выдыхаемом воздухе также составляет 4%. Отсюда

21. От чего зависит величина дыхательного коэффициента?

22. Чему равен дыхательный коэффициент при окислении в организме до конечных продуктов белков, жиров и углеводов?

При окислении белков – 0,8, жиров – 0,7, углеводов – 1, 0.

23. Почему дыхательный коэффициент для жиров и белков ниже, чем для углеводов?

На окисление белков и жиров расходуется больше О 2 , так как они содержат меньше внутримолекулярного кислорода, чем углеводы.

24. К какой величине приближается дыхательный коэффициент у человека в начале интенсивной физической работы? Почему?

К единице, потому что источником энергии в этом случае являются преимущественно углеводы.

25. Почему в первые минуты после интенсивной и длительной физической работы дыхательный коэффициент у человека больше единицы?

Потому что СО 2 выделяется больше, чем потребляется О 2 , так как молочная кислота, накопившаяся в мышцах, поступает в кровь и вытесняет СО 2 из бикарбонатов.

26. Что называют калорическим эквивалентом кислорода?

Количество тепла, освобождаемое организмом при потреблении 1л О 2 .

27. От чего зависит величина калорического эквивалента кислорода?

От соотношения белков, жиров и углеводов, окисляющихся в организме.

28. Чему равен калорический эквивалент кислорода при окислении в организме (в процессе диссимиляции) белков, жиров и углеводов?

Для белков – 4, 48 ккал (18, 8 кДж), для жиров – 4, 69 ккал (19, 6 кДж), для углеводов – 5, 05 ккал (21, 1 кДж).

29. Опишите кратко ход определения расхода энергии по способу Дугласа – Холдена (полный газовый анализ).

В течение нескольких минут испытуемый вдыхает атмосферный воздух, а выдыхаемый воздух собирают в специальный мешок, измеряют его количество и проводят анализ газов с целью определения объема потребленного кислорода и выделившегося СО 2 . Рассчитывают дыхательный коэффициент, с помощью которого по таблице находят соответствующий калорический эквивалент О 2 , который затем умножают на объем О 2 , потребленного за данный промежуток времени.

30. Опишите кратко метод М. Н. Шатерникова для определения расхода энергии у животных в эксперименте.

Животное помещают в камеру, в которую поступает кислород по мере его расходования. Выделяющийся при дыхании СО 2 поглощается щелочью. Расчет выделенной энергии осуществляется по количеству потребленного О 2 и усредненному калорическому эквиваленту О 2: 4,9 ккал (20,6 кДж).

31. Рассчитайте расход энергии за 1 минуту, если известно, что испытуемый потребил 300 мл О 2 . Дыхательный коэффициент равен 1,0.

ДК=1,0, ему соответствует калорический эквивалент кислорода, равный 5,05 ккал (21,12 кДж). Следовательно, расход энергии за минуту = 5,05 ккал х 0,3 = 1,5 ккал (6,3 кДж).

32. Опишите кратко ход определения расхода энергии по способу Крога у человека (неполный газовый анализ).

Испытуемый вдыхает кислород из мешка метаболиметра, выдыхаемый воздух возвращается в тот же мешок, предварительно пройдя через поглотитель СО 2 . По показаниям метаболиметра определяют расход О 2 и умножают на калорический эквивалент кислорода 4,86 ккал (20,36 кДж).

33. Назовите основные различия в расчете расхода энергии по способам Дугласа – Холдена и Крога.

Метод Дугласа – Холдена предполагает расчет расхода энергии по данным полного газового анализа; метод Крога – только по объему потребленного кислорода с использованием калорического эквивалента кислорода, характерного для условий основного обмена.

34. Что называют основным обменом?

Минимальный расход энергии, обеспечивающий гомеостазис в стандартных условиях: при бодрствовании, максимальном мышечном и эмоциональном покое, натощак (12 – 16 часов без еды), при температуре комфорта (18 – 20С).

35. Почему основной обмен определяют в стандартных условиях:максимального мышечного и эмоционального покоя, натощак, при температуре комфорта?

Потому что физическая нагрузка, эмоциональное напряжение, прием пищи и изменение температуры окружающей среды увеличивают интенсивность метаболических процессов в организме (расход энергии).

36. На какие процессы расходуется энергия основного обмена в организме?

На обеспечение жизнедеятельности всех органов и тканей организма, клеточный синтез, на поддержание температуры тела.

37. Какие факторы определяют величину должного (среднестатистического) основного обмена здорового человека?

Пол, возраст, рост и масса тела (вес).

38. Какие факторы, кроме пола, веса, роста и возраста, определяют величину истинного (реального) основного обмена здорового человека?

Условия жизнедеятельности, к которым организм адаптирован: постоянное проживание в холодной климатической зоне увеличивает основной обмен; длительное вегетарианское питание – уменьшает.

39. Перечислите способы определения величины должного основного обмена у человека. Какой метод используют для определения величины истинного основного обмена у человека в практической медицине?

По таблицам, по формулам, по номограммам. Метод Крога (неполный газовый анализ).

40. Чему равна величина основного обмена у мужчин и женщин в сутки, а также в расчете на 1 кг массы в сутки?

У мужчин 1500 – 1700 ккал (6300 – 7140 кДж), или 21 – 24 ккал (88 – 101 кДж)/кг/сутки. У женщин примерно на 10% меньше этой величины.

41. Одинакова ли у теплокровных животных и человека величина основного обмена, рассчитанная на 1 м 2 поверхности тела и на 1 кг массы тела?

При расчете на 1м 2 поверхности тела у теплокровных животных разных видов и человека показатели примерно равны, при расчете на 1 кг массы – сильно отличаются.

42. Что называют рабочим обменом?

Совокупность основного обмена и дополнительного расхода энергии, обеспечивающих жизнедеятельность организма в различных условиях.

43. Перечислите факторы, повышающие расход энергии организмом. Что называют специфически-динамическим действием пищи?

Физическая и умственная нагрузка, эмоциональное напряжение, изменение температуры и других условий окружающей среды, специфически-динамическое действие пищи (увеличение расхода энергии после приема пищи).

44. На сколько процентов увеличивается расход энергии организмом после приема белковой и смешанной пищи, жиров и углеводов?

После приема белковой пищи – на 20 – 30%, смешанной пищи – на 10 – 12%.

45. Как влияет температура окружающей среды на расход энергии организмом?

Изменение температуры в интервале 15 – 30С существенно не сказывается на энергозатратах организма. При температуре ниже 15С, а также выше 30С расход энергии увеличивается.

46. Как изменяется обмен веществ при температуре окружающей среды ниже 15? Какое это имеет значение?

Увеличивается. Это предотвращает охлаждение организма.

47. Что называют коэффициентом полезного действия организма при мышечной работе?

Выраженное в процентах отношение энергии, эквивалентной полезной механической работе, ко всей энергии, затраченной на выполнение этой работы.

48. Приведите формулу для расчета коэффициента полезного действия (КПД) у человека при мышечной работе, укажите среднюю его величину, расшифруйте элементы формулы.

где А - энергия, эквивалентная полезной работе, С - общий расход энергии, е - расход энергии за такой же промежуток времени в состоянии покоя. КПД равен 20%.

49. Какие животные называются пойкилотермными и гомойотермными?

Пойкилотермные животные (холоднокровные) – с непостоянной температурой тела, зависящей от температуры окружающей среды; гомойотермные (теплокровные) – животные с постоянной температурой тела, не зависящей от температуры окружающей среды.

50. Какое значение для организма имеет постоянство температуры тела? В каких органах наиболее интенсивно идет процесс теплообразования?

Обеспечивает высокий уровень жизнедеятельности относительно независимо от температуры окружающей среды. В мышцах, легких, печени, почках.

51. Назовите виды терморегуляции. Сформулируйте суть каждого из них.

Химическая терморегуляция – регуляция температуры тела с помощью изменения интенсивности теплопродукции; физическая терморегуляция – с помощью изменения интенсивности теплоотдачи.

52. Какие процессы обеспечивают теплоотдачу?

Теплоизлучение (радиация), теплоиспарение, теплопроведение, конвекция.

53. Как изменяется просвет сосудов кожи при понижении и при повышении температуры окружающей среды? В чем биологическое значение этого явления?

При понижении температуры сосуды кожи суживаются. При повышении температуры окружающей среды сосуды кожи расширяются. В том, что изменение ширины просвета сосудов, регулируя теплоотдачу, способствует поддержанию постоянной температуры тела.

54. Как и почему изменится теплопродукция и теплоотдача при сильном возбуждении симпатоадреналовой системы?

Теплопродукция увеличится вследствие стимуляции окислительных процессов, а теплоотдача уменьшится в результате сужения кожных сосудов.

55.Перечислите области локализации терморецепторов.

Кожа, кожные и подкожные сосуды, внутренние органы, ЦНС.

56. В каких отделах и структурах ЦНС находятся терморецепторы?

В гипоталамусе, ретикулярной формации среднего мозга, в спинном мозге.

57. В каких отделах ЦНС расположены центры терморегуляции? Какая структура ЦНС является высшим центром терморегуляции?

В гипоталамусе и спинном мозге. Гипоталамус.

58. Какие изменения возникнут в организме при длительном отсутствии в пищевом рационе жиров и углеводов, но при оптимальном поступлении белка с пищей (80 – 100 г в сутки)? Почему?

Будет наблюдаться превышение расхода азота организмом над приходом, потеря веса, поскольку энергозатраты будут покрываться в основном за счет белков и запасов жира, которые не пополняются.

59. В каком количестве и в каком соотношении должны содержаться белки, жиры и углеводы в пищевом рационе взрослого человека (усредненный вариант)?

Белки – 90 г, жиры – 110 г, углеводы – 410 г. Соотношение 1: 1, 2: 4, 6.

60. Как изменяется состояние организма при избыточном поступлении жиров?

Развивается ожирение, атеросклероз (преждевременно). Ожирение является фактором риска развития сердечно-сосудистых заболеваний и их осложнений (инфаркт миокарда, инсульт и др.), снижения продолжительности жизни.

1. Каково соотношение величин основного обмена у детей первых 3 – 4 лет жизни, в период полового созревания, в возрасте 18 – 20 лет и взрослых (ккал/кг/сутки)?

До 3 – 4 лет у детей примерно в 2 раза больше, в период полового созревания – в 1, 5 раза больше, чем у взрослых. В 18 – 20 лет – соответствует норме взрослых.

2. Нарисуйте график изменения основного обмена у мальчиков с возрастом (у девочек основной обмен на 5% ниже).

3. Чем объясняется высокая интенсивность окислительных процессов у ребенка?

Более высоким уровнем метаболизма молодых тканей, относительно большой поверхностью тела и, естественно, большими затратами энергии для поддержания постоянства температуры тела, повышенной секрецией гормонов щитовидной железы и норадреналина.

4. Как изменяются энергетические затраты на рост в зависимости от возраста ребенка: до 3-х месяцев жизни, до начала полового созревания, в период полового созревания?

Увеличиваются в первые 3 месяца после рождения, затем постепенно уменьшаются, а в период полового созревания вновь нарастают.

5. Из чего складывается и как распределяется в процентах общий расход энергии у ребенка в возрасте 1 года по сравнению со взрослым человеком?

У ребенка: 70% приходится на основной обмен, 20% – на движения и поддержание мышечного тонуса, 10% на специфически-динамическое действие пищи. У взрослого: 50 – 40 – 10% соответственно.

6. Взрослые или дети 3 – 5-летнего возраста затрачивают больше энергии при выполнении мышечной работы для достижения одного и того же полезного результата, во сколько раз и почему?

Дети, в 3 – 5 раз, так как у них менее совершенна координация, что приводит к избыточным движениям, в результате чего полезная работа у детей значительно меньше.

7. Как изменяется расход энергии при крике ребенка, на сколько процентов, вследствие чего?

Увеличивается на 100 – 200% вследствие увеличения теплопродукции в результате эмоционального возбуждения и увеличения мышечной активности.

8. Какая часть (в процентах) энерготрат ребенка грудного возраста обеспечивается за счет белков, жиров, углеводов? (сравните с нормой взрослого).

За счет белков – 10%, за счет жиров – 50%, за счет углеводов – 40%. У взрослых – 20 – 30 – 50%, соответственно.

9. Почему дети, особенно в грудном возрасте, быстро перегреваются при повышении температуры окружающей среды? Повышение или понижение температуры окружающей среды дети переносят легче?

Потому, что у детей повышена теплопродукция, недостаточно потоотделение и, следовательно, теплоиспарение, незрелый центр терморегуляции. Понижение.

10. Назовите непосредственную причину и объясните механизм быстрого охлаждения детей (особенно грудного возраста) при понижении температуры окружающей среды.

Повышенная теплоотдача у детей вследствие относительно большой поверхности тела, обильного кровоснабжения кожи, недостаточной теплоизоляции (тонкая кожа, отсутствие подкожной жировой клетчатки) и незрелости центра терморегуляции; недостаточное сужение сосудов.

11. В каком возрасте у ребенка появляются суточные колебания температуры, чем они отличаются от таковых у взрослых, в каком возрасте они достигают нормы взрослого?

В конце 1 месяца жизни; они незначительны и достигают нормы взрослого человека к пяти годам.

12. Что такое температурная "зона комфорта" ребенка, в пределах какой температуры она находится, чему равен этот показатель у взрослых?

Температура внешней среды, при которой индивидуальные колебания температуры кожи ребенка наименее выражены, находится в пределах 21 – 22 о С, у взрослого – 18 – 20 о С.

13. Какие механизмы терморегуляции наиболее готовы к функционированию к моменту рождения? В каких условиях могут включаться механизмы дрожательного термогенеза у новорожденных детей?

Усиленное теплообразование преимущественно недрожательного происхождения (высокий обмен веществ), потоотделение. В условиях предельного холодового воздействия.

14. В каком соотношении должны содержаться белки, жиры и углеводы в пищевом рационе детей в возрасте трех и шести месяцев, 1 года, старше одного года и у взрослых?

До 3 месяцев – 1: 3: 6; в 6 месяцев – 1: 2: 4. В возрасте 1 год и старше – 1: 1, 2: 4, 6, т. е. как и у взрослых.

15. Назовите особенности обмена минеральных солей у детей. С чем это связано?

Наблюдается ретенция солей в организме, особенно повышена потребность в кальции, фосфоре и железе, что связано с ростом организма.

11 Обмен энергии

Непременным условием поддержания жизни является получение организмами энергии из внешней среды, и хотя первоисточник энергии для всего живого - Солнце, непосредственно использовать его излучение способны только растения. Посредством фотосинтеза они превращают энергию солнечных лучей в энергию химических связей. Животные и человек получают необходимую им энергию, поедая растительную пищу. (Для хищных и отчасти для всеядных источником энергии служат другие животные - растительноядные.)

Прямое получение энергии солнечных лучей животными тоже возможно, например, пойкилотермные таким образом поддерживают температуру своего тела. Однако тепло (получаемое из внешней среды и образующееся в самом организме) не может быть преобразовано ни в какой другой вид энергии. Живые организмы, в отличие от технических устройств, принципиально неспособны к этому. Машина, использующая энергию химических связей, (например, двигатель внутреннего сгорания), сначала превращает ее в тепло и только затем - в работу: химическая энергия топлива тепло работа (расширение газа в цилиндре и движение поршня). В живых организмах возможна только такая схема: химическая энергия работа.

Итак, энергия химических связей в молекулах пищевых веществ - практически единственный источник энергии для животного организма, а тепловая энергия может быть использована им только для поддержания температуры своего тела. Кроме того, тепло из-за быстрого рассеивания в окружающей среде не может быть и запасено в организме на длительный срок. Если возникает избыток тепла в теле, то для гомойотермных животных это становится серьезной проблемой и иногда даже угрожает их жизни (см. разд. 11.3).

11.1. Источники энергии и пути ее превращения в организме

Живой организм - открытая энергетическая система: он получает из окружающей среды энергию (почти исключительно в виде химических связей), преобразует ее в тепло или работу и в таком виде возвращает ее в окружающую среду.

Компоненты пищевых веществ, поступающие из желудочно-кишечного тракта в кровь (например, глюкоза, жирные кислоты или аминокислоты), сами по себе не способны непосредственно передавать энергию своих химических связей ее потребителям, например, калий-натриевому насосу или актину и миозину мышц. Между пищевыми «энергоносителями» и «потребителями» энергии есть универсальный посредник - аденозинтрифосфат (АТФ). Именно он является непосредственным источником энергии для любых процессов в живом

организме. Молекула АТФ представляет собой соединение аденина, рибозы и трех фосфатных групп (рис. 11.1).

Связи между кислотными остатками (фосфатами) содержат в себе значительное количество энергии. Отщепляя под действием фермента АТФазы концевой фосфат, АТФ превращается в аденозиндифосфат (АДФ). При этом высвобождается 7,3 ккал/моль энергии. Энергия химических связей в молекулах пищевых веществ используется для ресинтеза АТФ из АДФ. Рассмотрим этот процесс на примере глюкозы (рис. 11.2).

Первый этап утилизации глюкозы - гликолиз. В ходе его молекула глюкозы сначала превращается в пировиноградную кислоту (пиру ват), давая при этом энергию для ресинтеза АТФ. Затем пируват превращается в ацетилкоэнзим А - исходный продукт для следующего этапа утилизации - цикла Кребса. Многократные превращения веществ, составляющие суть этого цикла, дают дополнительную энергию для ресинтеза АТФ и заканчиваются высвобождением ионов водорода. С передачи этих ионов в дыхательную цепь начинается третий этап - окислительное фосфорилирование, в результате которого также образуется АТФ.

В совокупности все три этапа утилизации (гликолиз, цикл Кребса и окислительное фосфорилирование) составляют процесс тканевого дыхания. Принципиально важно, что первый этап (гликолиз) проходит без использования кислорода (анаэробное дыхание) и приводит к образованию лишь двух молекул АТФ. Два последующих этапа (цикл Кребса и окислительное фосфорилирование) могут происходить только в кислородной среде (аэробное дыхание). Полная утилизация одной молекулы глюкозы приводит к появлению 38 молекул АТФ.

Существуют организмы, не только не нуждающиеся в кислороде, но погибающие в кислородной (или воздушной) среде - облигатные анаэробы. К ним, например, относятся бактерии - возбудители газовой гангрены (Clostridium perfringes), столбняка (С. tetani), ботулизма (С. botulinum) и др.

У животных анаэробные процессы являются вспомогательным видом дыхания. Например, при интенсивных и частых сокращениях мышц (или при статическом их сокращении) доставка кислорода кровью отстает от потребностей мышечных клеток. В это время образование АТФ происходит анаэробным путем с накоплением пирувата, который превращается в молочную кислоту (лактат). Нарастает кислородный долг. Прекращение или ослабление мышечной работы устраняет несоответствие между потребностью ткани в кислороде и возможностями его доставки, лактат превращается в пируват, последний либо через стадию ацетилкоэнзима А окисляется в цикле Кребса до двуокиси углерода, либо путем глюконеогенеза переходит в глюкозу.

Согласно второму началу термодинамики всякое превращение энергии из одного вида в другой происходит с обязательным образованием значительного количества тепла, которое затем рассеивается в окружающем пространстве. Поэтому синтез АТФ и передача энергии от АТФ к собственно «потребителям энергии» происходят с потерей примерно половины ее в виде тепла. Упрощая, можно представить эти процессы следующим образом (рис. 11.3).

Примерно половина химической энергии, содержащейся в пище, сразу же превращается в тепло и рассеивается в пространстве, другая половина идет на образование АТФ. При последующем расщеплении АТФ половина высвободившейся энергии опять-таки превращается в тепло. В результате на выполнение внешней работы (например, бег или перемещение каких-либо предметов в пространстве) животное и человек могут затратить не более 1/4 всей потребленной в виде пищи энергии. Таким образом, коэффициент полезного действия высших животных и человека (около 25%) в несколько раз выше, чем, например, коэффициент полезного действия (КПД) паровой машины.

Вся внутренняя работа (кроме процессов роста и накопления жира) быстро превращается в тепло. Примеры: (а) энергия, вырабатываемая сердцем, превращается в тепло благодаря сопротивлению сосудов току крови; (б) желудок выполняет работу по секреции соляной кислоты, поджелудочная железа секретирует гидрокарбонат-ионы, в тонкой кишке эти вещества взаимодействуют, и заложенная в них энергия преобразуется в тепло.

Результаты внешней (полезной) работы, произведенной животным или человеком, также в конечном счете превращаются в тепло: перемещение тел в пространстве согревает воздух, возведенные сооружения рушатся, отдавая заложенную в них энергию земле и воздуху в виде тепла. Египетские пирамиды - редкий пример того, как энергия мышечного сокращения, затраченная почти 5000 лет назад, все еще ждет неизбежного превращения в тепло.

Уравнение энергетического баланса:

Е = А + Н + S,

где Е - общее количество энергии, получаемой организмом с пищей; А - внешняя (полезная) работа; Н - теплоотдача; S - запасенная энергия.

Потери энергии с мочой, кожным салом и др. выделениями крайне малы, и ими можно пренебречь.

Методы измерения затрат энергии (прямая и непрямая калориметрия).

Образование и расход энергии.

Энергия, освобождающаяся при распаде органических веществ, накапливается в форме АТФ, количество которой в тканях организма поддерживается на высоком уровне. АТФ содержится в каждой клетке организма. Наибольшее количество ее обнаруживается в скелетных мышцах - 0,2-0,5%. Любая деятельность клетки всегда точно совпадает по времени с распадом АТФ.

Разрушившиеся молекулы АТФ должны восстановиться. Это происходит за счет энергии, которая освобождается при распаде углеводов и других веществ.

О количестве затраченной организмом энергии можно судить по количеству тепла, которое он отдает во внешнюю среду.

Прямая калориметрия основана на непосредственном определении тепла, высвобождающегося в процессе жизнедеятельности организма. Человека помещают в специальную калориметрическую камеру, в которой учитывают все количество тепла, отдаваемого телом человека. Тепло, выделяемое организмом, поглощается водой, протекающей по системе труб, проложенных между стенками камеры. Метод очень громоздок, применение его возможно в специальных научных учреждениях. Вследствие этого в практической медицине широко используют метод непрямой калориметрии. Сущность этого метода заключается в том, что сначала определяют объем легочной вентиляции, а затем - количество поглощенного кислорода и выделенного углекислого газа. Отношение объема выделенного углекислого газа к объему поглощенного кислорода носит название дыхательного коэффициента . По величине дыхательного коэффициента можно судить о характере окисляемых веществ в организме.

При окислении углеводов дыхательный коэффициент равен 1 так как для полного окисления 1 молекулы глюкозы до углекислого газа и воды потребуется 6 молекул кислорода, при этом выделяется 6 молекул углекислого газа:

С 6 Н12О 6 +60 2 =6С0 2 +6Н 2 0

Дыхательный коэффициент при окислении белка равен 0,8, при окислении жиров - 0,7.

Определение расхода энергии по газообмену. Количество тепла, высвобождающегося в организме при потреблении 1 л кислорода - калорический эквивалент кислорода - зависит от того, на окислении каких веществ используется кислород. Калорический эквивалент кислорода при окислении углеводов равен 21,13 кДж (5,05 ккал), белков - 20,1 кДж (4,8 ккал), жиров - 19,62 кДж (4,686 ккал).

Расход энергии у человека определяют следующим образом. Человек дышит в течение 5 мин, через мундштук (загубник), взятый в рот. Мундштук, соединенный с мешком из прорезиненной ткани, имеет клапаны. Они устроены так, что человек свободно вдыхает атмосферный воздух, а выдыхает воздух в мешок. С помощью газовых часов измеряют объем выдохнутого воздуха. По показателям газоанализатора определяют процентное содержание кислорода и углекислого газа во вдыхаемом и выдыхаемом человеком воздухе. Затем рассчитывают количество поглощенного кислорода и выделенного углекислого газа, а также дыхательный коэффициент. С помощью соответствующей таблицы по величине дыхательного коэффициента устанавливают калорический эквивалент кислорода и определяют расход энергии.

Количество тепла, освобождающегося после потребления организмом 1 л кислорода, носит название калорического эквивалента кислорода.

Зная общее количество кислорода, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества - белки, жиры или углеводы окислялись в теле. Показателем этого может служить дыхательный коэффициент.

Дыхательный коэффициент и его значение в исследовании обмена веществ

Дыхательным коэффициентом называется отношение объема выделенного угле­кислого газа к объему поглощенного кислорода. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Рассмотрим для примера, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисле­ния молекулы глюкозы можно выразить формулой:

При окислении глюкозы количество молекул образовавшегося углекислого газа и количество молекул затраченного (поглощенного) кислорода равны. Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогадро - Жерара). Следовательно, дыхательный коэффициент

отношение) при окислении глюкозы и других углеводов равен единице.

При окислении жиров и белков дыхательный коэффициент будет ниже единицы. При окислении жиров дыхательный коэффициент равен 0,7. Проиллюстрируем это на примере окисления трипальмитина:

Отношение между объемами углекислого газа и кислорода составляет в данном случае:

Аналогичный расчет можно сделать и для белка; при его окислении в организме дыхательный коэффициент равен 0,8.

При смешанной пище у человека дыхательный коэффициент обычно равен 0,85-0,9. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода, что видно из табл. 20.

Таблица 20 Соотношение дыхательного коэффициента и калорического эквивалента кислорода

Дыхательный коэффициент

Калорический эквивалент

кислорода, в килоджоулях

Калорический эквивалент

кислорода, в килокалориях

Определение энергетического обмена у человека в покое методом закрытой системы с неполным газовым анализом. Оч носительное постоянство дыхательного коэффициента (0,85-0,90) у людей при обычном питании в условиях покоя позволяет производить достаточно точное определение энергетического обмена у человека в покое, вычисляя только количество потребленного кислорода и беря его калорический эквивалент при усредненном дыхательном коэффициенте.

Количество потребленного организмом кислорода исследуется при помощи различ­ного типа спирографов.

Определив количество поглощенного кислорода и приняв усредненный дыхательный коэффициент равным 0,85, можно рассчитать энергообразование в организме; калори-ческий эквивалент 1 л кислорода при данном дыхательном коэффициенте равен 20,356 кДж, т. е. 4,862 ккал (см. табл. 20). Способ неполного газоанализа, благодаря своей простоте, получил широкое распространение.

Дыхательный коэффициент во время работы

Во время интенсивной мышечной работы дыхательный коэффициент повышается и в большинстве случаев приближается к единице. Это объясняется тем, что главным источником энергии во время напряженной деятельности является окисление углеводов. После завершения работы дыхательный коэффициент в течение нескольких первых минут так называемого периода восстановления резко повышается и может превысить единицу. В дальнейшем дыхательный коэффициент резко снижается до величин меньших, чем исходные, и только спустя 30-50 мин после напряженной работы он обычно нормализует­ся. Эти изменения дыхательного коэффициента показаны на рис. 196.

Изменения дыхательного коэффициента после окончания работы не отражают истинного отношения между используемым в данный момент кислородом и выделенной углекислотой. Дыхательный коэффициент в начале восстановительного периода повы­шается по следующей причине: в мышцах во время работы накапливается молочная кислота, на окисление которой во время работы не хватало кислорода (это так назы­ваемый кислородный долг). Молочная кислота поступает в кровь и вытесняет углекисло­ту из бикарбонатов, присоединяя основания. Благодаря этому количество выделенного углекислого газа больше количества углекислого газа, образовавшегося в данный момент в тканях. Обратная картина наблюдается в. дальнейшем, когда молочная кислота посте-

Рис. 196. Кривые четырех наблюдений (1-4) изменения дыхательного коэффициента во время двухчасовой интенсивной работы и после нее.

пенно исчезает из крови. Часть ее окисляется, часть ресинтезируется в гликоген, а часть выделяется с мочой и потом. По мере убыли молочной кислоты освобождаются основа­ния, которые до того были отняты у бикарбонатов. Эти основания вновь связывают углекислоту и образуют бикарбонаты. Поэтому через некоторое время после работы дыхательный коэффициент резко падает вследствие задержки в крови углекислоты, поступающей из тканей.

Исследование валового обмена

Длительное (на протяжении суток) определение газообмена дает возможность не только найти теплопродукцию организма, но решить вопрос о том, за счет окисления ка­ких питательных начал шло теплообразование. Рассмотрим это на примере.

Допустим, что обследуемый человек за сутки использовал 654,141 л кислорода и выделил 574,180 л углекислого газа. За это же время с мочой выделилось 16,8 г азота и 9,0191 г углерода.

Количество белка, распавшегося в организме, определяем по азоту мочи. Так как 1 г азота содержится в 6,25 г белка, то, следовательно, в организме распалось 16,8-6,25== 105 г белка. Находим количество углерода белкового происхождения. Для этого определяем количество углерода в распавшемся белке. Так как в белках содержится около 53% углерода, то, следовательно, в распав

шемся белке его было. На образование же углекислого газа пошла разность меж­

ду количеством углерода в распавшемся белке и углеродом, выделившимся с мочой, 55,65-9,0191 ==46,63 г. Определяем объемные количества углекислого газа белкового происхожде­ния, выделенного через легкие, исходя из того, что из 1 грамм-молекулы углерода (12 г) образуется

22,4 л углекислого газ; . Далее, исходя из дыхательного коэффициента,

равного для белков 0,8, находим количество кислорода, пошедшего на окисление белков:

. По разности между всем поглощенным кислородом и кислородом, пошедшим

на окисление белков, находим количество кислорода, пошедшее на окисление углеводов и жиров, 654,141 - 108,8= 545,341 л С>2. По разности между всем выделившимся углекислым газом и углекис­лым газом белкового происхождения, выделившимся легкими, находим количество углекислого газа, образовавшееся при окислении углеводов и жиров, 574,18-87,043 ==487,137 л СОа. Определяем количество углеводов и жиров, окислившихся в организме обследуемого за сутки. На основании того, что при окислении 1 г жира потребляется 2,019 л кислорода и образуется 1,431 л углекислого газа, а при окислении 1 г углеводов потребляется 0,829 л кислорода и столько же (0,829 г) образуется углекислого газа (ДК для углеводов равен 1), составляем уравнение, приняв за х количество жира, а за у количество углеводов, окисленных в организме. Решив систему уравнений с двумя неизвестными, получим:

Находим количество углеводов, окисленных в организме, подставляя значение х в любое из уравнений:

Итак, освобождение энергии в организме протекало за счет окисления 105 г белков, 99 г жиров и 417 г углеводов. Зная количество тепла, образуемого при окислении 1 г каждого из веществ (см. табл. 19), нетрудно рассчитать общую теплопродукцию организма за сутки:

Основной обмен

Интенсивность окислительных процессов и превращения энергии находится в зави­симости от индивидуальных особенностей организма (пол, возраст, масса тела и рост, условия и характер питания, мышечная работа, состояние эндокринных желез, нервной системы и внутренних органов - печени, почек, пищеварительного тракта и др.), а также от условий внешней среды (температура, барометрическое давление, влажность воздуха и его состав, воздействие лучистой энергии и т. д.).

Чтобы определить присущий данному организму уровень окислительных процессов и энергетических затрат, проводится исследование в определенных стандартных усло­виях. При этом стремятся исключить влияние ряда факторов, которые существенно сказываются на интенсивности энергетических затрат, а именно мышечную работу, прием пищи, влияние температуры окружающей среды. Энергетические затраты организма в таких стандартных условиях получили название основного обмена.

Энергетические затраты основного обмена связаны с поддержанием минимально необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем - дыхательной мускулатуры, сердца, почек, печени. Некоторая часть энергетических затрат основного обмена связана с поддержани­ем мышечного"тонуса. Освобождение в ходе всех этих процессов тепловой энергии обеспе­чивает ту теплопродукцию, которая необходима для поддержания температуры тела на постоянном уровне, как правило, превышающем температуру внешней среды.

Для определения основного обмена обследуемый должен находиться: 1) в состоянии мышечного покоя (положение лежа с расслабленной мускулатурой), не подвергаясь раздражениям, вызывающим эмоциональное напряжение; 2) натощак, т. е. через 12-16 ч после приема пищи; 3) при внешней температуре «комфорта» (18-20 °С), не вызывающей ощущения холода или жары.

Основной обмен определяют в состоянии бодрствования. Во время сна уровень окислительных процессов и, следовательно, энергетических затрат организма на 8-10% ниже, чем в состоянии покоя при бодрствовании.

Нормальные величины основного обмена человека. Величину основного обмена обычно выражают количеством тепла в больших калориях на 1 кг массы тела или на 1 м 2 поверхности тела за 1 ч или за одни сутки.

Для мужчины среднего возраста (примерно 35 лет), среднего роста (примерно 165 см) и со средней массой тела (примерно 70 кг) основной обмен равен 4,19 кДж (1 ккал) на 1 кг массы тела в час, или 7117 кДж (1700 ккал) в сутки; У женщин той же массы он примерно на 10% ниже.

Интенсивность основного обмена, пересчитанная на 1 кг массы тела, у детей значи­тельно выше, чем у взрослых. Величина основного обмена человека в возрасте от 20 до 40 лет сохраняется на довольно постоянном уровне. В пожилом возрасте основной обмен снижается.

Согласно формуле Дрейера, суточная величина основного обмена в килокалориях (//) составляет:

где V - масса тела в граммах, А - возраст человека, /< - константа, равная для муж­чины 0,1015, а для женщины-0,1129.

Формулы и таблицы основного обмена представляют средние данные, выведенные из большого числа исследований здоровых людей разного пола, возраста, массы тела и роста.

Определение основного обмена, согласно этим таблицам, у здоровых людей нормаль­ного телосложения дают приблизительно верные (ошибка « 5-8%) величины затраты энергии. Несоразмерно высокие для данной массы тела, роста, возраста и поверхности тела величины основного обмена наблюдаются при избыточной функции щитовидной железы. Понижение основного обмена встречается при недостаточности щитовидной железы (микседема), гипофиза, половых желез.

Правило поверхности

Если пересчитать интенсивность основного обмена на 1 кг массы тела, то у тепло­кровных животных разных видов (табл. 21) и у людей с разной массой тела и ростом она весьма различна. Если же произвести перерасчет интенсивности основного обмена на 1 м 2 поверхности тела, полученные у разных животных и людей величины различаются не столь резко.

Таблица 21

Величина теплопродукции у человека и других орга­низмов

Теплопродукция за 24 ч кДж (ккал)

Объект ис­

следования

на 1 кг массы

на 1 м поверх­

ности тела

Согласно правилу поверхности тела, затраты энергии теплокровными животными пропорциональны величине поверхности тела.

Ежедневная продукция тепла на 1 м 2 поверхности тела у человека равно 3559- 5234 кДж (850-1250 ккал), средняя цифра для мужчин-3969 кДж (948 ккал).

Для определения поверхности тела /? применяется формула:

Эта формула выведена на основании анализа результатов прямых измерений по­верхности тела. Константа К у человека равна 12,3. Более точная формула предложена Дюбуа:

где 1У 7 - масса тела в килограммах, Н - рост в сантиметрах.

Результат вычисления выражен в квадратных сантиметрах.

Правило поверхности верно неабсолютно. Как показано в приведенной выше табл. 21, оно представляет собой лишь правило, имеющее известное практическое значе­ние для ориентировочных расчетов освобождения энергии в организме.

Об относительности правила поверхности свидетельствует тот факт, что интенсив­ность обмена веществ у двух индивидуумов, у которых поверхность тела одинакова, может значительно различаться. Уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией, зависящей от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной, эндокринной и других систем.

Обмен энергии при физическом труде

Мышечная работа значительно увеличивает расход энергии. Поэтому суточный расход энергии у здорового человека, проводящего часть суток в движении и физической работе, значительно превышает величину основного обмена. Это увеличение энергети­ческих затрат составляет рабочую прибавку, которая тем больше, чем интенсивнее мы­шечная работа.

При мышечной работе освобождается тепловая и механическая энергия. Отношение механической энергии ко всей энергии, затраченной на работу, выраженное в процентах, называется коэффициентом полезного действия. При физическом труде человека коэф­фициент полезного действия колеблется от 16 до 25% и равняется в среднем 20%, но в от­дельных случаях может быть и выше.

Коэффициент полезного действия изменяется в зависимости от ряда условий. Так, у нетренированных людей он ниже, чем у тренированных, и увеличивается по мере тренировки.

Затраты энергии тем больше, чем интенсивнее совершаемая организмом мышечная работа. Это видно из следующих данных: если затраты энергии в условиях основного обмена составляют в среднем 4,2 кДж (1 ккал) на 1 кг массы тела в час, то при спокойном сидении затраты энергии в среднем равны 5,9 кДж (1,4 ккал) на 1 кг массы тела в час, при стоянии без напряжения - 6,3 кДж (1,5 ккал), при легкой работе (канце­лярские служащие, портные, механики по тонким работам, учителя) -7,5-10,5 кДж (1,8-2,5 ккал), при небольшой мышечной работе, связанной с ходьбой (врачи, лаборан­ты, почтальоны, переплетчики)-11,8-13,4 кДж-(2,8-3,2 ккал), при труде, связанном с мышечной работой средней тяжести (металлисты, маляры, столяры), 13,4-16,8 кДж (3,2-4,0 ккал), при тяжелом физическом труде 21,0-31,5 кДж (5,0-7,5 ккал).

Взрослое население по энергетическим затратам делится на 4 группы в зависимости от особенностей профессии (табл. 22).

Таблица22 Величина энергетических затрат в зависимости от особенностей профессий

Особенности профессии

Общий суточный расход энергии

Лица, работа которых не связана с затратой физи­

9211 .-13 816 кДж (2200-

ческого труда или требует не существенных фи­

зических усилий

9838-14 654 кДж (2350-

обслуживания, труд которых не требует больших

физических усилий

Работники механизированного труда и сферы

10 467-15 491 кДж (2500-

обслуживания, труд которых связан со значи­

тельными физическими усилиями

Четвертая

Работники немеханизированного труда или частич­

12 142-17 585 кДж (2900-

но механизированного труда большой и средней

Значительные различия энергетической потребности в группах зависят от пола (у мужчин больше), возраста (снижаются после 40 лет), степени активности отдыха и уровня коммунального обслуживания.

Суточный расход энергии детей и подростков зависит от возраста и составляет в среднем:

В старости энергозатраты снижаются и к 80 годам составляют 8373-9211 (2000-2200 ккал).

Обмен энергии при умственном труде

При умственном труде энергетические затраты значительно ниже, че.м при физическом.

Трудные математические вычисления, работа с книгой и другие формы умственного труда, если они не сопровождаются движением, вызывают ничтожное (2-3%) повыше­ние затраты энергии по сравнению с полным покоем. Однако в большинстве случаев различные виды умственного труда сопровождаются мышечной деятельностью, в особен­ности при эмоциональном возбуждении работающего (лектор, артист, писатель, оратор и т. д.), поэтому и энергетические затраты могут быть относительно большими. Пережи­тое эмоциональное возбуждение может вызвать в течение нескольких последующих дней повышение обмена на 11-19%. "

Специфически-динамическое действие пищи

После приема пищи интенсивность обмена веществ и энергетические затраты орга­низма увеличиваются но сравнению с их уровнем в условиях основного обмена. Увеличение обмена веществ и энергии начинается через час, достигает максимума через 3 ч после приема пищи и сохраняется в течение нескольких часов. Влияние приема пищи, усили­вающее обмен веществ и энергетические затраты, получило название специфически-динамического действия пищи.

При белковой пище оно наиболее велико: обмен увеличивается в среднем на 30 %. При питании жирами и углеводами обмен увеличивается у человека на 14-15%.

Регуляция обмена энергии

Уровень энергетического обмена находится в тесной зависимости от физической активности, эмоционального напряжения, характера питания, степени напряженности терморегуляции и ряда других факторов.

Получены многочисленные факты, свидетельствующие об условнорефлекторном изменении потребления кислорода и энергообмена. Любой ранее индифферентный раздражитель, будучи связан во времени с мышечной деятельностью, может служить сигналом к увеличению обмена веществ и энергии.

У спортсмена в предстартовом состоянии разко увеличивается потребление кислоро­да, а следовательно, и энергообмен. То же происходит во время прихода на работу и при действии факторов рабочей обстановки у рабочих, деятельность которых связана с мы­шечными усилиями. Если под гипнозом испытуемому внушить, что он выполняет тяжелую мышечную работу, обмен у него может значительно повыситься, хотя в действительности он не производит никакой работы. Все это свидетельствует о том, что уровень энергети­ческого обмена в организме может изменяться под влиянием коры головного мозга.

Особую роль в регуляции обмена энергии играет гипоталамичсская область мозга. Здесь формируются регуляторные влияния, которые реализуются вегетативными нерва­ми или гуморальным звеном за счет увеличения секреции ряда эндокринных желез. Особенно выражение усиливают обмен энергии гормоны щитовидной железы - тироксин и трийодтиронин и гормон мозгового слоя надпочечника - адреналин.

ПИТАНИЕ

Задача физиологов в обосновании рационального питания состоит в том, чтобы указать состав и количество пищевых продуктов, которые могут удовлетворить потреб­ности организма. Понятие «пищевые продукты», или «пищевые средства», не следует

смешивать с понятием «питательные вещества». К питательным веществам относятся определенные группы химических соединений: белки, жиры, углеводы, минеральные соли, витамины и вода. В том или ином количестве они содержатся в любом продукте, который в большинстве случаев представляет собой смесь ряда веществ.

Калорические коэффициенты питательных веществ

Зная состав пищевых продуктов и их усвояемость, можно вычислить энергетическую ценность принятой пищи, используя так называемые калорические коэффициенты пита­тельных веществ. Калорическим, или тепловым, коэффициентом, называют количество тепла, освобождаемое при сгорании 1 г вещества. Калорические коэффициенты основных питательных веществ при окислении их в организме таковы.

Дыхательным коэффициентом называется соотношение между объёмом выделенной углекислоты и поглощенного кислорода. Дыхательный коэффициент различен при окислении белков, жиров и углеводов.

Рассмотрим сначала, каков будет дыхательный коэффициент при потреблении организмом углеводов. Для примера возьмем глюкозу. Общий итог оксисления молекулы глюкозы можно выразить формулой:

С 6 Н 12 О 6 +6О2=6СО 2 +6Н 2 О

Как видно из уравнения реакции, при окислении глюкозы количества молекул образовавшегося углекислого газа и затраченного (поглащённого) кислорода равны. Равное количетво молекул газа при одной же температуре и одном и том же давлении занимает один и тот же (закон Авогадро-Жерара). Следовательно, дыхательный коэффициент (отношение СО 2 /О 2) при окислении глюкозы равен единице. Таков же этот коэффициент при окислении и других углеводов.

Дыхательный коэффициент будет ниже единицы при окислении и белков. При окислении жиров дыхательный коэффициент равен 0,7. В этом можно убедиться на основании итога окисления какого-нибудь жира. Иллюстрируем это на примере окисления трипальмитина:

2С 3 Н 5 (С 15 Н 31 СОО) 3 + 145 О 2 = 102 СО 2 + 98 Н 2 О.

Отношение между объемами углекислого газа и кислорода равно в данном случае:

102 СО 2 /145О 2 = 0,703.

Аналогичные расчеты можно сделать и для белков; при их окислении в организме дыхательный коэффициент равен 0,8.

При смешанной пище у человека дыхательный коэффициент обычно равен 0,85-0,9.

Так как количество калорий, освобождающееся при потреблении кислорода, различно в зависимости от того, окисляются ли в oрганизме белки, жиры или углеводы, то понятно, что оно также должно быть разным в зависимости от величины дыхательного коэффициента, который является показателем, какие вещества окислились в организме.

Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода, что видно из следующей таблицы:

В некоторых условиях, например по окончании интенсивной мышечной работы, величина дыхательного коэффициента, определенного за короткий интервал времени, не отражает потребления белков, жиров и углеводов.

Дыхательный коэффициент при работе

Во время интенсивной мышечной работы дыхательный коэффициент повышается и в большинстве случаев приближается к единице. Это объясняется тем, что главным источником энергии во время интенсивной работы является окисление углеводов. По окончании работы дыхательный коэффициент в течение нескольких первых минут, так называемого периода восстановления, резко повышается и может превысить единицу. В следующий период дыхательный коэффициент резко снижается до величин, меньших, чем исходные, и только через 30-50 минут после двухчасовой напряжённой работы он может вернуться к нормальным величинам. Эти изменения дыхательного коэффициента показывает рис. 98 .

Изменения дыхательного коэффициента по окончании работы не отражают истинного отношения между используемым в данный момент кислородом и выделенной углекислотой. Дыхательный коэффициент в начале восстановительного рада повышается по следующей причине: в мышцах во время работы накопляется молочная кислота, на окисление которой во время работы не хватало кислорода ( ). Эта молочная кислота поступает в кровь и вытесняет углекислоту из бикарбонатов, присоединяя основания. Благодаря этому количество выделенного углекислого газа больше, чем количество углекислого газа, образовавшегося в данный момент в тканях.

Обратная картина наблюдается в последующий период, когда молочная кислота постепенно исчезает из крови. Часть ее окисляется, часть ресинтезируется в исходный продукт, часть выделяется с мочойи потом. По мере убыли молочной кислоты освобождаются основания, которые до того были отняты у бикарбонатов. Эти основания вновь образуют бикарбонаты, и поэтому через некоторое время после работы происходит резкое падение дыхательного коэффициента вследствие задержки в крови углекислоты, поступающей из тканей.

Рис. 98. Кривые четырех наблюдений изменения дыхательного коэффициента во время и после двухчасовой интенсивной работы (по Талботу, Гендерсону, Диллу и др.).