Землетрясение. Балльная шкала интенсивности, силы землетрясений

Благодаря современным технологиям, ученым удалось подсчитать, сколько ежегодно происходит землетрясений на нашей планете. Их фиксируется больше миллиона. Большая часть их них не ощущается людьми из-за своей малой магнитуды, но есть те, которые становятся настоящей катастрофой.

А что такое магнитуда землетрясений и в чем ее измеряют? Как ученым удается определять, какие из явлений нанесут ущерб, а какие останутся неощутимыми?

Магнитуда

Учеными были разработаны специальные шкалы, по которым измеряют силу подземных толчков. Чтобы понять, что такое магнитуда землетрясения, необходимо ознакомиться с величинами измерений этого явления.

Есть несколько типов шкал: Меркалли - Канкани, Медведева - Шпонхойера - Карника, Рихтера. Благодаря им понятно, что такое магнитуда. Это число, которое можно измерить по определенному эталонному показателю. Во время очередного землетрясения принято говорить о бальности и магнитуде.

Шкала определения магнитуды

Самой первой шкалой длительное время считали сетку Меркалли - Канкани. В наше время она является устаревшей моделью, так что значение подземных толчков ею не измеряют.

Однако на ее основе разработаны все современные методы оценки силы ударов, в числе которых международная шкала MSK 64 (Медведева - Шпонхойера - Карника). Ее берут в большинстве стран мира для анализа интенсивности явления.

MSK 64

Данная система оценки представлена двенадцатибальной шкалой. По ней можно узнать, что характеризует магнитуда землетрясения:

  • 1 балл. Такие явления не ощущаются людьми, но их фиксируют аппараты.
  • 2 балла. В некоторых случаях могут наблюдаться людьми, чаще всего на верхних этажах зданий.
  • 3 балла. Удары заметны тем, у кого высокая чувствительность.
  • Землетрясение 4 балла. Отмечается дребезжание стекол.
  • 5 баллов. Считается достаточно ощутимым землетрясением, при котором могут раскачиваться отдельные предметы.
  • 6 баллов. Образование трещин на зданиях.
  • 7 баллов. Возможно падение тяжелых предметов. В стенах зданий появляются крупные трещины.
  • 8 баллов. Дома частично рушатся.
  • 9 баллов. Здания и другие конструкции рушатся.
  • 10 баллов. В грунте возникают глубокие трещины, старые строения полностью разрушаются.
  • 11 баллов. На поверхности земли появляются многочисленные трещины, в горах происходят обвалы. Здания полностью разрушаются.
  • 12. Рельеф серьезно изменяется, а строения полностью разрушаются.

Оценка по системе Рихтера

В 1935 году ученый Ч. Рихтер предположил, что магнитуда - это энергия сейсмических волн. На основе этого утверждения он разработал особую шкалу, по которой до сих пор проводят оценку сотрясательной активности.

Шкала магнитуд Рихтера характеризует величину энергии, выделяемой во время сейсмологической активности. В ней используется логарифмический масштаб, где каждое значение указывает на толчок в десять раз больше предыдущего. К примеру, если фиксируется землетрясение 4 балла, то явление вызовет в десять раз более сильное колебание, чем магнитуда 3 балла по этой же шкале.

По Рихтеру, сейсмологическая активность измеряется следующим образом:

    1.0-2.0 - фиксируется приборами;

    2.0-3.0 - слабые ощущения толчков;

    3.0 - раскачиваются люстры в домах;

    4-5 - толчки слабые, но могут вызывать незначительные разрушения;

    6.0 - толчки, способные вызвать умеренные разрушения;

    7 - трудно устоять на ногах, по стенам начинают идти трещины, лестничные пролеты могут разрушаться;

    8.5 - очень сильные землетрясения, способные вызывать изменения рельефа.

    9 - вызывает цунами, почва сильно трескается.

    10 - глубина разлома сто и более километров.

Землетрясения в истории

Одним из самых сильных землетрясений в мире стала сейсмологическая активность, зафиксированная в 1960 году в Чили. По шкале Рихтера, приборы указали на значительную активность. Тогда чилийцы узнали, что такое магнитуда 8.5 балла. Толчки вызвали цунами с десятиметровой высотой волн.

Через четыре года, в северной части Аляскинского залива, были зафиксированы сотрясания магнитудой 9 баллов. Из-за этой активности плит произошло сильное изменение береговой линии некоторых островов.

Еще одно мощное землетрясение произошло в 2004 году в Индийском океане. По шкале Рихтера ему присвоено 9 баллов. Толчки стали причиной возникновения сильнейшего цунами с высотой волны более пятнадцати метров.

В 2011 году, в Японии, произошло землетрясение, которое стало причиной огромной трагедии: погибли тысячи людей и была разрушена АЭС.

К сожалению, подобные катастрофы не большая редкость. Как предотвратить землетрясения, ученым пока неизвестно.

Землетрясение – это резкие импульсные сотрясения участков земной поверхности. Эти сотрясения могут быть вызваны разными причинами, что позволяет по происхождению землетрясения разделять на следующие главные группы:

  • тектонические, обусловленные высвобождением энергии, возникающей вследствие деформаций толщ горных пород;
  • вулканические, связанные с движением магмы, взрывом и обрушением вулканических аппаратов;
  • денудационные, связанные с поверхностными процессами (крупными обвалами, обрушением сводов карстовых полостей);
  • техногенные, связанные с деятельностью человека (добыча нефти и газа, ядерные взрывы и пр.).

Наиболее частыми и мощными являются землетрясения тектонического происхождения. Напряжения, вызванные тектоническими силами, накапливаются в течение некоторого времени. Затем, когда превышается предел прочности, происходит разрыв горных пород, сопровождающийся выделением энергии и деформацией в виде упругих колебаний (сейсмических волн). Область внутри Земли, где происходит образование разломов и возникновение сейсмических волн, называют очагом землетрясения ; очаг является областью зарождения землетрясения. Как правило, главному сейсмическому удару предшествуют предварительные более слабые точки – форшоки (англ. «fore» - впереди + «shock» - удар, толчок ), связанные с началом образовании разломов. Затем происходит главный сейсмический удар и следующие за ним афтершоки. Афтершоки – это подземные толчки, следующие за главным толчком из одной с ним очаговой области. Число афтершоков и продолжительность их возникновения возрастает с ростом энергии землетрясения, уменьшением глубины его очага и может достигать нескольких тысяч. Их образование связано с возникновением новых разломов в очаге. Таким образом, землетрясение обычно проявляется в виде группы сейсмических толчков, состоящей из форшоков, главного толчок (сильнейшего землетрясение в группе) и афтерошоков. Сила землетрясения определяется объёмом его очага: чем больше объём очага, тем сильнее землетрясение.

Условный центр очага землетрясения называют гипоцентром , или фокусом землетрясения. Его объём можно очертить по расположению гипоцентров афтершоков. Проекция гипоцентра на поверхность называется эпицентром землетрясения. Вблизи эпицентра колебания земной поверхности и связанные с ними разрушения проявляются с наибольшей силой. Территория, где землетрясение проявилось с максимальной силой, называется плейстосейстовой областью . По мере удаления от эпицентра интенсивность землетрясения и степень связанных с ним разрушений уменьшается. Условные линии, соединяющие территории с одинаковой интенсивностью землетрясения называются изосейстами . От очага землетрясения изосейсты вследствие разной плотности и типа грунтов расходятся в виде эллипсов или изогнутых линий.

По глубине гипоцентров землетрясения делятся на мелкофокусные (0-70 км от поверхности), среднефокуные (70-300 км) и глубокофокусные (300-700 км). Основанная часть землетрясений зарождается в очагах на глубине 10-30 км, т.е. относится к мелкофокусным.

Регистрация и измерение интенсивности землетрясений

Ежегодно на Земле регистрируется несколько сотен тысяч землетрясений, часть из них оказываются разрушительными, часть вообще не ощущается людьми. Интенсивность землетрясений может быть оценена с двух позиций: 1) внешнего эффекта землетрясения и 2) измерения физического параметра землетрясения – магнитуды.

Определение внешнего эффекта землетрясения основано на определении его интенсивности , представляющей собой меру величины сотрясения грунта. Она определяется степенью разрушения построек, характером изменения земной поверхности и ощущениями, которые испытывают люди во время землетрясений. Интенсивность землетрясений измеряется в баллах.

Разработано несколько шкал для определения интенсивности землетрясений. Первая из них была предложена в 1883-1884 гг. М. Росси и Ф. Форелем, интенсивность в соответствии с этой шкалой измерялась в интервале от 1 до 10 баллов. Позднее, в 1902 г. в США была разработана более совершенная 12-балльная шкала, получившая название шкалы Меркалли (по имени итальянского вулканолога). Этой шкалой, несколько видоизменённой, и в настоящее время широко пользуются сейсмологи США и ряда других стран. В нашей стране и некоторых европейских странах используется 12-балльная международная шкала интенсивности землетрясений (MSK-64), получившая название по первым буквам её авторов (Медведев –Шионхойер - Карник).

Шкала MSK-64 (с упрощениями)
Баллы Критерии
ОДИН БАЛЛ Людьми такое землетрясение не ощущается, за исключением единичных наблюдателей, находящихся в особо чувствительных местах и занимающих определенные положения. Толчки регистрируются только специальными сейсмографами.
ДВА БАЛЛА Землетрясение очень слабое. Колебание почвы ощущается немногими людьми, находящимися в покое, главным образом в самых верхних этажах зданий, расположенных в непосредственной близости от эпицентра.
ТРИ БАЛЛА Землетрясение слабое. Колебания ощущаются в помещениях, главным образом в верхних этажах высотных зданий. Во время этого землетрясения раскачиваются подвешенные предметы, особенно люстры, скрипят и приходят в движение раскрытые двери. Стоящие автомобили начинают слегка раскачиваться на рессорах. Некоторые люди способны оценить длительность сотрясения.
ЧЕТЫРЕ БАЛЛА Умеренное землетрясение. Оно ощущается многими людьми и особенно теми, кто находится в помещении. Лишь немногие люди могут почувствовать такое землетрясение на открытом воздухе, и только те, кто в данное время находится в покое. Некоторые люди ночью от такого землетрясения пробуждаются. В момент землетрясения раскачиваются подвешенные предметы, дребезжат стекла, хлопают двери, звенит посуда, трещат деревянные стены, карнизы и перекрытия. Заметно покачиваются на рессорах стоящие автомашины.
ПЯТЬ БАЛЛОВ Ощутимое землетрясение. Оно чувствуется всеми людьми, где бы они ни находились. Просыпаются все спящие. Двери раскачиваются на петлях и открываются самопроизвольно, стучат ставни, захлопываются и открываются окна. Жидкость в сосудах раскачивается и иногда переливается через край. Бьется часть посуды, трескаются оконные стекла, местами в штукатурке появляются трещины, опрокидывается мебель. Маятниковые часы останавливаются. Иногда раскачиваются телеграфные столбы, опорные мачты, деревья и все высокие предметы.
ШЕСТЬ БАЛЛОВ Сильное землетрясение. Ощущается всеми людьми. Многие люди в испуге покидают помещение. В момент колебания почвы и после них походка становится неустойчивой. Бьются окна и стеклянная посуда. Отдельные предметы падают со стола. Падают картины. Приходит в движение и опрокидывается мебель. Появляются трещины на стенах в кирпичной кладке. Заметно сотрясаются деревья и кусты.
СЕМЬ БАЛЛОВ Очень сильное землетрясение. Люди с трудом удерживаются на ногах. В испуге инстинктивно выбегают из помещений. Дрожат подвешенные предметы. Ломается мебель. Многие здания получают сильные повреждения. Печные трубы обламываются на уровне крыш. Обваливается штукатурка, плохо уложенные кирпичи, камни, черепица, карнизы и неукрепленные специально парапеты. Появляются значительные трещины в грунте. Происходят оползни и обвалы на каменистых и глинистых склонах. Самопроизвольно звонят колокола. В реках и открытых водоемах мутнеет вода. Из бассейнов вода выплескивается. Повреждаются бетонные оросительные каналы.
ВОСЕМЬ БАЛЛОВ Разрушительное землетрясение. Типовые здания получают значительные повреждения. Иногда частично разрушаются. Ветхие постройки разрушаются. Происходит отрыв панелей от каркасов. Покачиваются и падают печные и фабричные трубы, памятники, башни, колонны, водонапорные башни. Ломаются сваи. Обламываются ветви на деревьях, возникают трещины во влажном грунте и на крутых склонах.
ДЕВЯТЬ БАЛЛОВ Опустошительное землетрясение. От действия такого землетрясения возникает паника. Дома разрушаются. Серьезно повреждаются плотины и борта водохранилищ. Рвутся подземные трубопроводы. На земной поверхности появляются значительные трещины.
ДЕСЯТЬ БАЛЛОВ Уничтожающее землетрясение. Большая часть построек разрушается до основания. Обрушиваются некоторые хорошо построенные деревянные здания и мосты. Серьезные повреждения получают дамбы, насыпи и плотины. На земной поверхности появляются многочисленные трещины, некоторые из них имеют ширину около 1 м. Возникают большие провалы и крупные оползни. Вода выплескивается из каналов, русел рек и из озер. Приходят в движение песчаные и глинистые грунты на пляжах и низменных участках. Слегка изгибаются рельсы на железных дорогах. Ломаются крупные ветви и стволы деревьев.
ОДИННАДЦАТЬ БАЛЛОВ Катастрофическое землетрясение. Сохраняются только немногие, особо прочные каменные здания. Разрушаются плотины, насыпи, мосты. На поверхности земли появляются широкие трещины, уходящие глубоко в недра. Подземные трубопроводы полностью выходят из строя. Сильно вспучиваются рельсы на железных дорогах. На склонах возникают крупные оползни.
ДВЕНАДЦАТЬ БАЛЛОВ Сильное катастрофическое землетрясение. Полное разрушение зданий и сооружений. До неузнаваемости изменяется ландшафт, смещаются скальные массивы, оползают склоны, возникают крупные провалы. Поверхность земли становится волнообразной. Образуются водопады, возникают новые озера, изменяются русла рек. Растительность и животные погибают под обвалами и осыпями. Обломки камней и предметов взметаются высоко в воздух.

В соответствии с этой шкалой землетрясения подразделяются на слабые - от 1 до 4 баллов, сильные - от 5 до 7 баллов и сильнейшие - более 8 баллов.

Оценка интенсивности землетрясений, хотя и опирается на качественную оценку эффекта землетрясения (воздействие землетрясения на поверхность), но не позволяет проводить математически точное определение параметров землетрясения.

В 1935 г. американским сейсмологом Ч. Рихтером была предложена более объективная шкала, основанная на измерении магнитуды (эта шкала впоследствии стала широко известна как шкала Рихтера). Магнитуда (от лат. «magnitudo» – величина ), согласно определению Ч. Рихтера и Б. Гуттенберга, это величина, представляющая собой десятичный логарифм максимальной амплитуды сейсмической волны (в тысячных долях миллиметра), записанной стандартным сейсмографом на расстоянии 100 км от эпицентра землетрясения .

Хотя в этом определении не уточняется, какие из существующих волн надо принимать в расчет, стало общепринятым измерять максимальную амплитуду продольных волн (для землетрясений, очаг которых располагается вблизи поверхности, обычно измеряется амплитуда поверхностных волн). В целом, магнитуда характеризует степень смещения частиц грунта при землетрясениях: чем больше амплитуда, тем значительнее смещение частиц.

Шкала Рихтера теоретически не имеет верхнего предела. Чувствительные приборы регистрируют толчки с магнитудой 1,2, в то время как люди начинают ощущать толчки только с магнитудой 3 или 4. Наиболее сильные землетрясения, происшедшие в историческое время, достигали магнитуды 8,9 (печально знаменитое землетрясение в Лиссабоне в 1755 г.).

Между интенсивностью землетрясения в эпицентре (I 0), которая выражается в баллах, и величиной магнитуды (М) существует зависимость, описываемая формулами

I 0 = 1,7М-2,2 и М = 0,6I 0 +1,2 .

Соотношение между балльностью и магнитудой зависит от расстояния между очагом и точкой регистрации на поверхности земли. Чем меньше глубина очага, тем больше интенсивность сотрясения на поверхности при одной и той же магнитуде.

Следовательно, землетрясения с одинаковой магнитудой могут вызывать разные разрушения на поверхности в зависимости от глубины очага.

Регистрация землетрясений проводится на сейсмических станциях с помощью специальных приборов – сейсмографов, записывающих даже малейшие колебания грунта. Запись колебаний называют сейсмограммой. Сейсмограммы должны регистрировать колебания грунта в двух взаимоперпендикулярных направлениях в горизонтальной плоскости и колебания в вертикальной плоскости, для чего в состав сейсмографов включены три записывающих устройства (сейсмометра). На основании определения разницы во времени регистрации разных типов сейсмических волн, и зная скорость их распространения, можно определить положение гипоцентра землетрясения. Точность таких определений достаточно высока, особенно с учётом того, что к сегодняшнему дню действует развитая международная сеть сейсмических станций.

Для характеристики землетрясений важное значение имеют также их энергия и ускорение при сотрясении грунта.

Энергия, выделяемая при землетрясении, может быть рассчитана исходя из значения магнитуды по формуле

log Е = 11,5 M , где Е – энергия, М – магнитуда.

Величина ускорения показывает, с какой скоростью происходит сотрясение грунта. Ускорения, получаемые грунтом, передаются сооружениям, которые начинают раскачиваться и разрушаться. Для измерения ускорения пользуются показаниями специальных приборов - акселерографов, которыми оснащены современные сейсмографы. Ускорения в горизонтальном направлении всегда больше, чем в вертикальном. Так, максимально высокие из зарегистрированных горизонтальных ускорений составляют 1,15g, а максимально высокие вертикальные - до 0,7g. Именно поэтому наиболее опасными считаются горизонтальные толчки.

Размещение сейсмически активных зон

Подавляющее большинство землетрясений приурочены к тектонически активным зонам земной коры, связанным с границами литосферных плит. Так высокосейсмичным районом является обрамление Тихого океана, где океаническая литосферная плита поддвигается под континентальные или более древние океанические плиты (процесс поддвига океанической плиты называют субдукцией). Зоны поддвига плиты и её погружения в мантию трассируется положением очагов землетрясений, фиксируемых до поверхности нижней мантии (граница 670 км, связанная с возрастанием плотности вещества) и иногда глубже. Эти зоны получили название сейсмофокальных зон Беньофа. Ещё одна область активной сейсмичности связана с Альпийско-Гималайским поясом, протягивающимся от Гибралтара до Бирмы. Этот грандиозный складчатый пояс образован в результате столкновения континентальных литосферных плит. В пределах этого пояса очаги землетрясений приурочены главным образом к земной коре (глубинам до 40-50 км) и не образуют выраженных сейсофокальных зон. Их образование связано с процессами скучивания и раскалывания на надвигающиеся друг на друга пластины толщ континентальной литосферы. Очаги землетрясений приурочены и к зонам раздвижения и раскалывания плит. Процесс раздвижения литосферных, сопровождающийся формированием новой океанической коры за счёт мантийных расплавов, активно протекает в зонах срединно-океанических хребтов. Растяжение континентальных литосферных плит (происходящее, например, в Восточной Африке или в районе озера Байкал).

Сейсмическая шкала

Землетрясе́ния - подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами) или искусственными процессами (взрывы, заполнение водохранилищ, обрушением подземных полостей горных выработок). Небольшие толчки могут вызывать также подъём лавы при вулканических извержениях.

Ежегодно на всей Земле происходит около миллиона землетрясений, но большинство из них так незначительны, что они остаются незамеченными. Действительно сильные землетрясения, способные вызвать обширные разрушения, случаются на планете примерно раз в две недели. К счастью, большая их часть приходится на дно океанов, и поэтому не сопровождается катастрофическими последствиями (если землетрясение под океаном обходится без цунами).

Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Разрушения зданий и сооружений вызываются колебаниями почвы или гигантскими приливными волнами (цунами), возникающими при сейсмических смещениях на морском дне.

Введение

Причиной землетрясения является быстрое смещение участка земной коры как целого в момент пластической (хрупкой) деформации упруго напряженных пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли . Само смещение происходит под действием упругих сил в ходе процесса разрядки - уменьшения упругих деформаций в объеме всего участка плиты и смещения к положению равновесия. Землетрясение представляет собой быстрый (в геологических масштабах) переход потенциальной энергии , накопленной в упруго-деформированных (сжимаемых, сдвигаемых или растягиваемых) горных породах земных недр, в энергию колебаний этих пород (сейсмические волны), в энергию изменения структуры пород в очаге землетрясения. Этот переход происходит в момент превышения предела прочности пород в очаге землетрясения.

Предел прочности пород земной коры превышается в результате роста суммы сил, действующих на нее:

  1. Силы вязкого трения мантийных конвекционных потоков о земную кору;
  2. Архимедовой силы , действующей на легкую кору со стороны более тяжелой пластичной мантии ;
  3. Лунно -солнечных приливов;
  4. Изменяющегося атмосферного давления .

Эти же силы приводят и к возрастанию потенциальной энергии упругой деформации пород в результате смещения плит под их действием. Плотность потенциальной энергии упругих деформаций под действием перечисленных сил нарастает практически во всем объеме плиты (по-разному в разных точках). В момент землетрясения потенциальная энергия упругой деформации в очаге землетрясения быстро (почти мгновенно) снижается до минимальной остаточной (чуть ли не до нуля). Тогда как в окрестностях очага за счет сдвига во время землетрясения плиты как целого упругие деформации несколько увеличиваются. Поэтому и случаются часто в окрестностях главного повторные землетрясения - афтершоки. Точно так же малые «предварительные» землетрясения - форшоки - могут спровоцировать большое в окрестностях первоначального малого землетрясения. Большое землетрясение (с большим сдвигом плиты) может вызвать последующие индуцированные землетрясения даже на удаленных краях плиты.

Из перечисленных сил первые две намного больше 3-ей и 4-й, но скорость их изменения намного меньше, чем скорость изменения приливных и атмосферных сил. Поэтому точное время прихода землетрясения (год, день, минута) определяется изменением атмосферного давления и приливными силами. Тогда как гораздо большие, но медленно меняющиеся силы вязкого трения и Архимедовой силы задают время прихода землетрясения (с очагом в данной точке) с точностью до столетий и тысячелетий.

Глубокофокусные землетрясения, очаги которых располагаются на глубинах до 700 км от поверхности, происходят на конвергентных границах литосферных плит и связаны с субдукцией .

Сейсмические волны и их измерение

Типы сейсмических волн

Сейсмические волны делятся на волны сжатия и волны сдвига .

  • Волны сжатия, или продольные сейсмические волны, вызывают колебания частиц пород, сквозь которые они проходят, вдоль направления распространения волны, обуславливая чередование участков сжатия и разрежения в породах. Скорость распространения волн сжатия в 1,7 раза больше скорости волн сдвига, поэтому их первыми регистрируют сейсмические станции. Волны сжатия также называют первичными (P-волны). Скорость P-волны равна скорости звука в соответствующей горной породе. При частотах P-волн, больших 15 Гц, эти волны могут быть восприняты на слух как подземный гул и грохот.
  • Волны сдвига, или поперечные сейсмические волны, заставляют частицы пород колебаться перпендикулярно направлению распространения волны. Волны сдвига также называют вторичными (S-волны).

Существует ещё третий тип упругих волн - длинные или поверхностные волны (L-волны). Именно они вызывают самые сильные разрушения.

Измерение силы и воздействий землетрясений

Для оценки и сравнения землетрясений используются шкала магнитуд и шкала интенсивности.

Шкала магнитуд

Шкала магнитуд различает землетрясения по величине магнитуды, которая является относительной энергетической характеристикой землетрясения. Существует несколько магнитуд и соответственно магнитудных шкал: локальная магнитуда (ML); магнитуда, определяемая по поверхностным волнам (Ms); магнитуда, определяемая по объемным волнам (mb); моментная магнитуда (Mw).

Наиболее популярной шкалой для оценки энергии землетрясений является локальная шкала магнитуд Рихтера . По этой шкале возрастанию магнитуды на единицу соответствует 32-кратное увеличение освобождённой сейсмической энергии. Землетрясение с магнитудой 2 едва ощутимо, тогда как магнитуда 7 отвечает нижней границе разрушительных землетрясений, охватывающих большие территории. Интенсивность землетрясений (не может быть оценена магнитудой) оценивается по тем повреждениям, которые они причиняют в населённых районах.

Шкалы интенсивности

Шкала Медведева-Шпонхойера-Карника (MSK-64)

12-бальная шкала Медведева-Шпонхойера-Карника была разработана в 1964 году и получила широкое распространение в Европе и СССР. С 1996 года в странах Европейского союза применяется более современная Европейская макросейсмическая шкала (EMS). MSK-64 лежит в основе СниП-11-7-81 «Строительство в сейсмических районах» и продолжает использоваться в России и странах СНГ.

Балл Сила землетрясения Краткая характеристика
1 Не ощущается. Отмечается только сейсмическими приборами.
2 Очень слабые толчки Отмечается сейсмическими приборами. Ощущается только отдельными людьми, находящимися в состоянии полного покоя в верхних этажах зданий, и очень чуткими домашними животными.
3 Слабое Ощущается только внутри некоторых зданий, как сотрясение от грузовика.
4 Умеренное Распознаётся по лёгкому дребезжанию и колебанию предметов, посуды и оконных стёкол, скрипу дверей и стен. Внутри здания сотрясение ощущает большинство людей.
5 Довольно сильное Под открытым небом ощущается многими, внутри домов - всеми. Общее сотрясение здания, колебание мебели. Маятники часов останавливаются. Трещины в оконных стёклах и штукатурке. Пробуждение спящих. Ощущается людьми и вне зданий, качаются тонкие ветки деревьев. Хлопают двери.
6 Сильное Ощущается всеми. Многие в испуге выбегают на улицу. Картины падают со стен. Отдельные куски штукатурки откалываются.
7 Очень сильное Повреждения (трещины) в стенах каменных домов. Антисейсмические, а также деревянные и плетневые постройки остаются невредимыми.
8 Разрушительное Трещины на крутых склонах и на сырой почве. Памятники сдвигаются с места или опрокидываются. Дома сильно повреждаются.
9 Опустошительное Сильное повреждение и разрушение каменных домов. Старые деревянные дома кривятся.
10 Уничтожающее Трещины в почве иногда до метра шириной. Оползни и обвалы со склонов. Разрушение каменных построек. Искривление железнодорожных рельсов.
11 Катастрофа Широкие трещины в поверхностных слоях земли. Многочисленные оползни и обвалы. Каменные дома почти полностью разрушаются. Сильное искривление и выпучивание железнодорожных рельсов.
12 Сильная катастрофа Изменения в почве достигают огромных размеров. Многочисленные трещины, обвалы, оползни. Возникновение водопадов, подпруд на озёрах, отклонение течения рек. Ни одно сооружение не выдерживает.

Происходящее при сильных землетрясениях

Землетрясение начинается с разрыва и перемещения горных пород в каком-нибудь месте в глубине Земли. Это место называется очагом землетрясения или гипоцентром. Глубина его обычно бывает не больше 100 км, но иногда доходит и до 700 км . Иногда очаг землетрясения может быть и у поверхности Земли. В таких случаях, если землетрясение сильное, мосты , дороги , дома и другие сооружения оказываются разорванными и разрушенными.

Участок земли, в пределах которого на поверхности, над очагом, сила подземных толчков достигает наибольшей величины, называется эпицентром.

В одних случаях пласты земли, расположенные по сторонам разлома, надвигаются друг на друга. В других - земля по одну сторону разлома опускается, образуя сбросы. В местах, где они пересекают речные русла, появляются водопады . Своды подземных пещер растрескиваются и обрушиваются. Бывает, что после землетрясения большие участки земли опускаются и заливаются водой . Подземные толчки смещают со склонов верхние, рыхлые слои почвы, образуя обвалы и оползни . Во время землетрясения в Калифорнии в году образовалась глубокая трещина на поверхности. Она протянулась на 450 километров.

Понятно, что резкое перемещение больших масс земли в очаге должно сопровождаться ударом колоссальной силы. За год люди [кто? ] могут ощущать около 10 000 землетрясений. Из них примерно 100 бывают разрушительными.

Измерительные приборы

Для обнаружения и регистрации всех типов сейсмических волн используются специальные приборы - сейсмографы . В большинстве случаев сейсмограф имеет груз с пружинным прикреплением, который при землетрясении остаётся неподвижным, тогда как остальная часть прибора (корпус, опора) приходит в движение и смещается относительно груза. Одни сейсмографы чувствительны к горизонтальным движениям, другие - к вертикальным. Волны регистрируются вибрирующим пером на движущейся бумажной ленте. Существуют и электронные сейсмографы (без бумажной ленты).

Другие виды землетрясений

Вулканические землетрясения

Вулканические землетрясения - разновидность землетрясений, при которых землетрясение возникает в результате высокого напряжения в недрах вулкана . Причина таких землетрясений - лава , вулканический газ. Землетрясения этого типа слабы, но продолжаются долго, многократно - недели и месяцы. Тем не менее, опасности для людей этого вида землетрясение не представляет.

Техногенные землетрясения

В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническая активность - увеличивается частота землетрясений и их магнитуда. Это связано с тем, что масса воды, накопленная в водохранилищах, своим весом увеличивает давление в горных породах , а просачивающаяся вода понижает предел прочности горных пород. Аналогичные явления происходят при выемке больших количеств породы из шахт, карьеров, при строительстве крупных городов из привозных материалов.

Обвальные землетрясения

Землетрясения также могут быть вызваны обвалами и большими оползнями . Такие землетрясения называются обвальными, они имеют локальный характер и имеют небольшую силу.

Землетрясения искусственного характера

Землетрясение может быть вызвано и искусственно: например, взрывом большого количества взрывчатых веществ или же при ядерном взрыве . Такие землетрясения зависят от количества взорванного вещества. К примеру, при испытании КНДР ядерной бомбы в году произошло землетрясение умеренной силы, которое было зафиксировано во многих странах.

Наиболее разрушительные землетрясения

  • 23 января - Ганьсу и Шеньси, Китай - 830 000 человек погибло
  • - Ямайка - Превращен в руины г.Порт-Ройял
  • - Калькутта , Индия - 300 000 человек погибло
  • - Лиссабон - от 60 000 до 100 000 человек погибло, город полностью разрушен
  • - Колабрия, Италия - от 30 000 до 60 000 человек погибло
  • - Нью-Мадрид, Миссури , США - город превращен в руины, наводнение на территории в 500 кв.км
  • - Санрику, Япония - эпицентр был под морем. Гигантская волна смыла в море 27 000 человек и 10 600 строений
  • - Ассам , Индия - На площади в 23 000 кв.км.рельеф изменен до неузнаваемости, вероятно крупнейшее за всю историю человечества землетрясение
  • - Сан-Франциско , США 1 500 человек погибло, уничтожено 10 кв.км. города
  • - Сицилия , Италия 83 000 человек погибло, превращен в руины г.Мессина
  • - Ганьсу , Китай 20 000 человек погибло
  • - Великое землетрясение Канто - Токио и Йокогама , Япония (8,3 по Рихтеру) - 143 000 человек погибло, около миллиона осталось без крова в результате возникших пожаров
  • - Внутренний Тавр, Турция 32 000 человек погибло
  • - Ашхабад , Туркмения , Ашхабадское землетрясение , - 110 000 человек погибло
  • - Эквадор 10 000 человек погибло
  • - Гималаи разворочена в горах территория площадью 20 000 кв.км.
  • - Агадир , Марокко 12 000 - 15 000 человек погибло
  • - Чили , около 10 000 погибло, разрушены города Консепсьен, Вальдивия , Пуэрто-Мон
  • - Скопье , Югославия около 2 000 погибло, большая часть города превращена в руины

Сильнейшие землетрясения на протяжении всей истории человечества наносили колоссальный материальный ущерб и являлись причиной огромного количества жертв среди населения. Первые упоминания о подземных толчках датируются 2000 годами до нашей эры.
И не смотря на достижения современной науки и развитие технологий, никто до сих пор не может предсказать точное время, когда стихия нанесёт удар, поэтому часто становится невозможной быстрая и своевременная эвакуация людей.

Землетрясения – это стихийные бедствия, в результате которых гибнет больше всего людей, гораздо больше чем, например, при ураганах или тайфунах.
В этом рейтинге мы расскажем про 12 самых сильных и разрушительных землетрясений в истории человечества.

12. Лиссабон

1 ноября 1755 года, в столице Португалии, городе Лиссабоне произошло сильнейшее землетрясение, в последствии названное Великим лиссабонским землетрясением. Страшным стечением обстоятельств являлось то, что 1 ноября – День Всех Святых и тысячи жителей собрались на мессе в церквях Лиссабона. Эти церкви, как и другие здания по всему городу не выдержали мощных толчков и рухнули, похоронив под своими обломками тысячи несчастных.

Затем на город хлынула 6-метровая волна цунами, накрывшая оставшихся в живых людей, мечущихся в панике по улочкам разрушенного Лиссабона. Разрушения и человеческие жертвы были колоссальными! В результате землетрясения, которое длилось не более 6 минут, вызванного им цунами и многочисленных пожаров, охвативших город, погибло не менее 80.000 жителей столицы Португалии.

Многие известные деятели и философы касались этого смертоносного землетрясения в своих работах, например, Иммануил Кант, пытавшийся найти научное объяснение столь масштабной трагедии.

11. Сан – Франциско

18 апреля 1906 года, в 5:12 утра мощные подземные толчки сотрясли спящий Сан-Франциско. Сила толчков составляла 7,9 балла и в результате сильнейшего землетрясения в городе было разрушено 80% зданий.

После первых подсчетов погибших, власти сообщили о 400 жертвах, но в дальнейшем их число возросло до 3000 человек. Однако основной ущерб городу нанесло не само землетрясение, а вызванный им чудовищный пожар. В результате было уничтожено более 28.000 зданий по всему Сан-Франциско, материальный ущерб составил более 400 миллионов долларов по курсу того времени.
Многие жители сами поджигали свои полуразрушенные дома, которые были застрахованы от пожара, но не от землетрясения.

10. Мессина

Крупнейшим землетрясением в Европе стало землетрясение в Сицилии и Южной Италии, когда 28 декабря 1908 года, в результате мощнейших подземных толчков силой в 7,5 баллов по шкале Рихтера, по оценкам различных экспертов погибло от 120 до 200.000 человек.
Эпицентром катастрофы стал Мессинский пролив, расположенный между Аппенинским полуостровом и Сицилией, больше всего пострадал город Мессина, где практически не осталось ни одного уцелевшего здания. Много разрушений принесла и огромная волна цунами, вызванная подземными толчками и усиленная подводным оползнем.

Задокументированный факт: спасатели смогли вытащить двух истощенных, обезвоженных, но живых детей из-под обломков, спустя 18 дней после удара стихии! Многочисленные и обширные разрушения были вызваны в первую очередь низким качеством зданий в Мессине и других частях Сицилии.

Неоценимую помощь жителям Мессины оказали русские моряки императорского флота. Корабли в составе учебной группы совершали плавание по Средиземному морю и в день трагедии оказались в порту Аугуста на Сицилии. Сразу после подземных толчков, моряки организовали спасательную операцию и благодаря их отважным действиям, были спасены тысячи жителей.

9. Хайюань

Одним из самых смертоносных землетрясений в истории человечества, стало разрушительное землетрясение, ударившее 16 декабря 1920 года по уезду Хайюань, входящий в провинцию Ганьсу.
По оценкам историков, в тот день погибло не менее 230.000 человек. Сила толчков была такова, что целые селения пропадали в разломах земной коры, очень сильно пострадали такие крупные города как Сиань, Тайюань и Ланчжоу. Невероятно, но сильные волны, образовавшиеся после удара стихии были зафиксированы даже в Норвегии.

Современные исследователи полагают что количество погибших было гораздо больше и насчитывает не менее 270.000 человек. В то время это было 59 % населения уезда Хайюань. Несколько десятков тысяч человек погибли от холода, после того как их жилища были разрушены стихией.

8. Чили

Землетрясение в Чили 22 мая 1960 года, считается сильнейшим землетрясением в истории сейсмологии, сила толчков составила 9.5 баллов по шкале Рихтера. Землетрясение было настолько мощным, что вызвало волны цунами высотой более 10 метров, накрывшие не только побережье Чили, но и причинившие огромный ущерб городу Хило на Гавайях, а часть волн достигла побережья Японии и Филиппин.

Погибло более 6.000 человек, большинство из которых попали под удар цунами, разрушения были немыслимые. Без жилья и крова остались 2 миллиона человек, а сумма ущерба составила более 500 миллионов долларов. В некоторых районах Чили, удар волны цунами был настолько силён, что многие дома унесло на 3 км вглубь материка.

7. Аляска

27 марта 1964 года, на территории Аляски произошло самое сильное землетрясение в истории Америки. Сила толков составила 9,2 балла по шкале Рихтера и это землетрясение стало сильнейшим после удара стихии в Чили в 1960 году.
Погибло 129 человек, из которых жертвами подземных толчков стали 6 несчастных, остальных смыло огромной волной цунами. Наибольшие разрушения стихия вызвала в Анкоридже, а подземные толчки были зарегистрированы в 47 штатах США.

6. Кобе

Землетрясение в Кобе, в Японии, 16 января 1995 года, стало одним из самых разрушительных в истории. Подземные толчки силой в 7,3 балла начались в 05:46 утра по местному времени и продолжались несколько суток. В результате погибло более 6000 человек, 26.000 получили ранения.

Ущерб, нанесенный инфраструктуре города было просто огромен. Было разрушено более 200.000 зданий, в порту Кобе оказались уничтожены 120 причалов из 150, электроснабжения не было несколько дней. Общий ущерб от удара стихии составил около 200 миллиардов долларов, что на тот момент являлось 2,5 % от всего ВВП Японии.

На помощь пострадавшим жителям кинулись не только правительственные службы, но и японская мафия – якудза, члены которой доставляли пострадавшим от удара стихии воду и продукты.

5. Суматра

26 декабря 2004 года, сильнейшее цунами, обрушившееся на берега Таиланда, Индонезии, Шри-Ланки и другие страны, было вызвано разрушительным землетрясением силой в 9,1 балла по шкале Рихтера. Эпицентр подземных толчков находился в Индийском океане, недалеко от острова Симёлуэ, возле северо-западного побережья Суматры. Землетрясение было необычайно масштабным, произошел сдвиг земной коры на расстоянии 1200 км.

Высота волн цунами достигала 15 -30 метров и жертвами стихии по различным оценкам стали от 230 до 300.000 человек, хотя точное количество погибших подсчитать невозможно. Многих людей просто смыло в океан.
Одной из причин такого количества жертв стало отсутствие системы раннего предупреждения в Индийском океане, с помощью которого можно было сообщить местному населению о приближении цунами.

4. Кашмир

8 октября 2005 года, в регионе Кашмир, находящимся под контролем Пакистана, произошло сильнейшее землетрясение в Южной Азии за последние сто лет. Сила подземных толчков составила 7, 6 баллов по шкале Рихтера, что сопоставимо с землетрясением в Сан-Франциско, в 1906 году.
В результате удара стихии погибли по официальным данным – 84.000 человек, по неофициальным – более 200.000. Спасательные работы были затруднены в результате военного конфликта между Пакистаном и Индией в этом регионе. Многие села и деревни оказались полностью стёрты с лица земли, а также был полностью уничтожен город Балакот в Пакистане. В Индии жертвами землетрясения стали 1300 человек.

3. Гаити

12 января 2010 года на Гаити произошло землетрясение силой 7 баллов по шкале Рихтера. Основной удар пришелся на столицу государства – город Порт-о-Пренс. Последствия были ужасны: практически 3 миллиона человек остались без крова, были разрушены все больницы и тысячи жилых зданий. Количество жертв было просто огромным, по различным оценкам от 160 до 230.000 человек.

В город хлынули преступники, сбежавшие из уничтоженной стихией тюрьмы, на улицах стали нередки случаи мародерства, грабежей и разбоев . Материальный ущерб от землетрясения оценивается в 5, 6 миллиардов долларов.

Не смотря на то, что посильную помощь в устранение последствий стихии Гаити оказали множество государств – Россия, Франция, Испания, Украина, США, Канада и десятки других, спустя более пяти лет после землетрясения, более 80.000 человек до сих пор проживают в импровизированных лагерях для беженцев.
Гаити является беднейшей страной в западном полушарии и это стихийное бедствие нанесло непоправимый удар по экономике и уровню жизни граждан.

2. Землетрясение в Японии

11 марта 2011 года в регионе Тохоку произошло сильнейшее землетрясение в истории Японии. Эпицентр находился восточнее острова Хонсю и сила подземных толчков составила 9,1 баллов по шкале Рихтера.
В результате удара стихии, была сильно повреждена АЭС в городе Фукусима и разрушены энергоблоки на реакторах 1, 2, и 3. Многие районы стали непригодными для жизни в результате радиоактивного излучения.

После подводных толчков, огромная волна цунами накрыла побережье и уничтожила тысячи административных и жилых зданий. Погибло более 16.000 человек, 2.500 до сих пор считаются пропавшими без вести.

Материальный ущерб также оказался колоссальным – более 100 миллиардов долларов. А учитывая, что на полное восстановление разрушенной инфраструктуры могут уйти годы, сумма ущерба может вырасти в несколько раз.

1. Спитак и Ленинакан

В истории СССР есть много трагических дат и одна из самых известных – землетрясение, сотрясшее Армянскую ССР 7 декабря 1988 года. Мощнейшие подземные толчки всего за полминуты практически полностью уничтожили северную часть республики, захватив территорию, на которой проживало более 1 миллиона жителей.

Последствия стихии были чудовищны: практически полностью был стёрт с лица Земли город Спитак, сильно пострадал Ленинакан, разрушены более 300 сёл и уничтожено 40% промышленных мощностей республики. Более 500 тысяч армян остались без крова, погибло по разным оценкам, от 25.000 до 170.000 жителей, инвалидами остались 17.000 граждан.
Помощь в восстановлении разрушенной Армении оказали 111 государств и все республики СССР.

Дата публикации 17.07.2011 20:32

В сообщениях СМИ, в интернете, прессе каждый человек регулярно сталкивается с тем, что сила землетрясений обычно указывается в баллах. К таким характеристикам все давно привыкли. Ассоциации при этом довольно просты: 12 баллов - самое сильное, разрушительное землетрясение, а 1 балл - самое слабое и незначительное. Но какие последствия землетрясений могут быть в каждом случае? Какое бедствие считать сильным, а какое - слабым? Что это вообще за шкала измерения землетрясений? Чем она отличается от не менее популярных "магнитудных" характеристик?

На самом деле, привычная методика измерения силы землетрясения - это международная система MSK-64, основанная на шкале Меркалли-Канкани 1902 года. Эту систему часто путают с 9-бальной шкалой Рихтера, которая характеризует силу толчков, что фиксируется сейсмографом. Так, например, сообщение в СМИ «землетрясение с магнитудой 6.0» значит только то, что произошел толчок соответствующей мощности. А вот сообщение "землетрясение силой 10 баллов" - явная характеристика разрушений, которое вызвали толчки в конкретной местности.

Каждый уровень, который может иметь сила землетрясения , имеет вполне определенно сформулированные последствия. Сайт "Выживание" предлагает вашему вниманию подробное описание каждого уровня, от 1 до 12 баллов. Это знание поможет лучше ориентироваться в том потоке информации, который поступает о в разных частях земного шара и правильно оценивать прогнозы землетрясений.

Сейсмическая шкала

1 балл - колебания ощущаются исключительно приборами. Человек колебаний не ощущает.

2 балла - колебания могут почувствовать только люди, что находятся в спокойном, неподвижном состоянии.

3 балла - колебания чувствуют некоторые люди, находящиеся дома.

4 балла - колебания чувствует большинство людей. В зданиях могут дребезжать стекла.

5 баллов - колебания могут разбудить спящего человека. В помещениях нетрудно заметить раскачивание висячих предметов (например, ламп или люстр).

6 баллов - зданиям наносятся некоторые косметические повреждения, в штукатурке могут возникать небольшие трещины.

7 баллов - неизбежны трещины в штукатурке, ее частичное разрушение. Возникают трещины в стенах, а в некоторых зданиях возникает угроза частичных обрушений.

8 баллов - существенные конструктивные повреждения зданий: крупные трещины в стенах, обрушение балконов, карнизов и дымовых труб.