Закон Джоуля-Ленца: история возникновения. Закон Джоуля-Ленца: его формулировка и применение

Способность тела производить работу называется энергией тела . Таким образом, мерой количества энергии является работа. Энергия тела тем больше, чем большую работу может произвести это тело при своем движении. Энергия не исчезает, а переходит из одной формы в другую. Например, в генераторе механическая энергия преобразуется в электрическую энергию, а в двигателе – электрическая в механическую. Однако не вся энергия является полезной, т.е. часть ее расходуется на преодоление внутреннего сопротивления источника и проводов.

Работа электрического тока численно равна произведению напряжения, силы тока в цепи и времени его прохождения. Единица измерения – Джоуль.

Для измерения работы или энергии электрического тока используется электроизмерительный прибор − счетчик электрической энергии.

Электрическая энергия помимо джоулей измеряется в ватт-часах или киловатт-часах :

1 Вт·ч = 3 600 Дж, 1 кВт·ч = 1 000 Вт·ч.

Мощность электрического тока – это работа, производимая (или потребляемая) в единицу времени. Единица измерения – Ватт.

Для измерения мощности электрического тока используется электроизмерительный прибор − ваттметр.

Кратными единицами измерения мощности являются киловатт или мегаватт:

1 кВт = 1 000 Вт, 1 МВт = 1 000 000 Вт.

В табл. 1 приведена мощность ряда устройств.

Таблица 1

Название устройства

Мощность устройства, кВт

Лампа карманного фонаря

Холодильник домашний

Лампы осветительные (бытовые)

Электрический утюг

Стиральная машина

Электрическая плита

0,6; 0,8; 1; 1,25

Электропылесос

Лампы в звездах башен Кремля

Двигатель электровоза ВЛ10

Электродвигатель прокатного стана

Гидрогенератор Братской ГЭС

Турбогенератор

50 000 − 1 200 000

Соотношения между мощностью, током, напряжением и сопротивлением приведены на рис. 1.

P U

I R

R·I

Рис. 1

Скорость, с которой механическая или другая энергия преобразуется в источнике в электрическую называется мощностью источника :

где W и – электрическая энергия источника.

Скорость, с которой электрическая энергия преобразуется в приемнике в другие виды энергии, в частности в тепловую, называется мощностью приемника :

Мощность, определяющая непроизвольный расход энергии, например, на тепловые потери в источнике или в проводниках, называют мощностью потерь:

По закону сохранения энергии мощность источника равна сумме мощностей потребителей и потерь:

Это выражение представляет собой баланс мощностей .

Эффективность передачи энергии от источника к приемнику характеризует коэффициент полезного действия (КПД) источника:

где Р 1 или Р ист – мощность, отдаваемая источником энергии во внешнюю цепь;

Р 2 – мощность, получаемая извне или потребляемая мощность;

P или Р 0 вн ) – мощность, расходуемая на преодоление потерь в источник или приемнике энергии.

Электрический ток представляет собой направленное движение электрически заряженных частиц. При столкновении движущихся частиц с молекулами и ионами вещества кинетическая энергия движущихся частиц передается ионам и молекулам, вследствие чего происходит нагревание проводника. Таким образом, электрическая энергия преобразуется в тепловую.

В 1844 г. русским академиком Э.Х. Ленцем и английским ученым Джоулем одновременно и независимо друг от друга был открыт закон, описывающий тепловое действие тока.

Закон Джоуля-Ленца : при прохождении электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого электрический ток протекает по проводнику:

где Q – количество теплоты, Дж, I – сила тока, А; R – сопротивление проводника, Ом; t – время, в течение которого электрический ток протекал по проводнику, с.

Закон Джоуля-Ленца используют при расчетах тепловых режимов источников электроэнергии, линий электропередачи, потребителей и других элементов электрической цепи. Преобразование электроэнергии в тепловую имеет очень большое практическое значение. Вместе с тем тепловое действие во многих случаях оказывается вредным (рис. 2).

Эмилий Христианович Ленц (1804 - 1865) - русский знаменитый физик. Он является одним из основоположников электромеханики. С его именем связано открытие закона, определяющего направление и закона, определяющего электрическое поле в проводнике с током.

Кроме того, Эмилий Ленц и английский учёный-физик Джоуль, изучая на опыте независимо один от другого открыли закон, согласно которому количество теплоты, которое выделяется в проводнике, будет прямо пропорционально квадрату электрического тока, который проходит по проводнику, его сопротивлению и времени, в течение которого электрический ток поддерживается неизменным в проводнике.

Данный закон получил название закон Джоуля - Ленца, формула его выражает следующим образом:

где Q - количество выделившейся теплоты, l - ток, R - сопротивление проводника, t - время; величина k называется тепловым эквивалентом работы. Численное значение этой величины зависит от выбора единиц, в которых производятся измерения остальных величин, входящих в формулу.

Если количество теплоты измерять в калориях, ток в амперах, сопротивление в Омах, а время в секундах, то k численно равно 0,24. Это значит, что ток в 1а выделяет в проводнике, который обладает сопротивлением в 1 Ом, за одну секунду число теплоты, которое равно 0,24 ккал. Исходя из этого, количество теплоты в калориях, выделяющееся в проводнике, может быть рассчитано по формуле:

В системе единиц СИ энергия, количество теплоты и работа измеряются единицами - джоулями. Поэтому коэффициент пропорциональности в законе Джоуля - Ленца равен единице. В этой системе формула Джоуля - Ленца имеет вид:

Закон Джоуля - Ленца можно проверить на опыте. По проволочной спиральке, погружённой в жидкость, налитую в калориметр, пропускается некоторое время ток. Затем подсчитывается количество теплоты, выделившейся в калориметре. Сопротивление спиральки известно заранее, ток измеряется амперметром и время секундомером. Меняя ток в цепи и используя различные спиральки, можно проверить закон Джоуля - Ленца.

На основании закона Ома

Подставляя значение тока в формулу (2), получим новое выражение формулы для закона Джоуля - Ленца:

Формулой Q = l²Rt удобно пользоваться при расчёте количества теплоты, выделяемого при последовательном соединении, потому что в этом случае во всех проводниках одинаков. Поэтому, когда происходит нескольких проводников, в каждом из них будет выделено такое количество теплоты, которое пропорционально сопротивлению проводника. Если соединить, например, последовательно три проволочки одинаковых размеров - медную, железную и никелиновую, то наибольшее количество теплоты будет выделяться из никелиновой, так как её наибольшее, она сильнее и нагревается.

Если то электрический ток в них будет различен, а напряжение на концах таких проводников одно и то же. Расчёт количества теплоты, которое будет выделяться при таком соединении, лучше вести, используя формулу Q = (U²/R)t.

Эта формула показывает, что при параллельном соединении каждый проводник выделит такое количество теплоты, которое будет обратно пропорционально его проводимости.

Если соединить три одинаковой толщины проволоки - медную, железную и никелиновую - параллельно между собой и пропустить через них ток, то наибольшее количество теплоты выделится в она и нагреется сильнее остальных.

Беря за основу закон Джоуля - Ленца, производят расчёт различных электроосветительных установок, отопительных и нагревательных электроприборов. Также широко используется преобразование энергии электричества в тепловую.

Теория: При прохождении электрического тока через проводник, проводник нагревается (утюг, плойка, паяльник).
Количество теплоты выделяемое проводником с током равно произведению квадрата силы тока на сопротивление проводника и на время прохождения электрического тока. Q=I 2 Rt

Или с учетом закона Ома:

Какое количество теплоты выделяется за 10 мин в проволочной спирали сопротивлением 15 Ом, если сила тока в спирали 2 А?
Решение: Q=I 2 Rt, нам все известно I=2А, R=15Ом, t=10мин=600с.
Q=2 2 ·15·600=36000 Дж = 36кДж.
Ответ: 36 кДж

Задание огэ по физике (фипи): Электрический паяльник включён в цепь напряжением 220 В. За 5 мин в нём выделилось количество теплоты 36,3 кДж. Чему равно сопротивление паяльника?
Задание огэ по физике (фипи): Две спирали электроплитки сопротивлением по 10 Ом каждая соединены последовательно и включены в сеть с напряжением 220 В. Через какое время на этой плитке закипит вода массой 1 кг, налитая в алюминиевую кастрюлю массой 300 г, если их начальная температура составляла 20 °С? Потерями энергии на нагревание окружающего воздуха пренебречь.

Дано: СИ Решение:

R 0 = 10 Ом
U =220 В
t 1 = 20 °С
t 2 = 100 °С
m 1 = 1 кг
m 2 = 300 г
с 1 = 4200 Дж/(°С·кг) с 2 = 920 Дж/(°С·кг)


0,3 кг
Q 1 =c 1 m 1 (t 2 -t 1) - количество теплоты которое необходимо передать воде массой 1 кг, что бы нагреть ее с температуры 20 °С до температуры кипения 100 °С.
Q 1 =4200·1·(100-20)=336000 Дж
Q 2 =c 2 m 2 (t 2 -t 1) - количество теплоты которое необходимо передать алюминиевой кастрюле массой 300 г, что бы нагреть ее с температуры 20 °С до температуры кипения 100 °С.
Q 2 =920·0,3·(100-20)=22080 Дж
так как потерями энергии на нагревание окружающего воздуха пренебрегаем, получим что Q=Q 1 +Q 2 энергия которая выделилась на электроплитки.
Q=336000+22080=358080 Дж
Две спирали электроплитки сопротивлением по 10 Ом каждая соединены последовательно, общее сопротивление плитки R = R 0 + R 0 , R=10+10=20 Ом
По закону Джоуля – Ленца
выразим время:
получим
Ответ: 148 с
t - ?

Задание огэ по физике: Сопротивление R 1 первого кипятильника в 3 раза больше, чем сопротивление R 2 второго кипятильника. При включении в одну и ту же сеть количество теплоты, выделяемое за единицу времени первым кипятильником, по сравнению со вторым
1) в 3 раза больше
2) в 3 резе меньше
3) в 9 раза больше
4) в 9 резе меньше
Решение: При включении в одну и ту же сеть по закону Ома сила тока у второго кипятильника больше так как сопротивление второго в три раза меньше, по закону Джоуля - Ленца Q=I 2 Rt, на первом резистре будет выделяться в три раза меньше тепла.
Ответ: 2.
Задание огэ по физике: Электрическая плитка при силе тока 6 А потребляет 1080 кДж энергии. Чему равно время прохождения тока по спирали плитки, если ее сопротивление 25 Ом?
1) 7200 с
2) 1200 с
3) 7,2 с
4) 1,2 с

Задание огэ по физике: Электрическая плитка, включена в сеть напряжением 220 В. Какую энергию потребляет плитка за 20 мин работы, если сила тока, протекающего через ее спираль, 5 А?
1) 22 кДж
2) 110 кДж
3) 1320 кДж
4) 4840 кДж
Решение: из закона Ома сначала найдем сопротивление , R=220/5=44 Ом, t = 20 мин = 1200 с, по закону Джоуля – Ленца Q=(220·220·1200)/44= 1320000 Дж = 1320 кДж.
Ответ: 3
Задание огэ по физике (фипи): Электрическая плитка при силе тока 6 А за 120 с потребляет 108 кДж энергии. Чему равно сопротивление спирали плитки?
Задание огэ по физике (фипи): Электрическая лампочка, включённая в сеть напряжением 220 В, за 30 мин потребляет 1980 кДж электроэнергии. Чему равна сила тока, протекающего через её спираль?

Задание огэ по физике (фипи): Сколько времени потребуется электрическому нагревателю, чтобы довести до кипения 2,2 кг воды, начальная температура которой 10 °С? Сила тока в нагревателе 7 А, напряжение в сети 220 В, КПД нагревателя равен 45%.
Решение: При протекании электрического тока через нагреватель выделяется энергия, которая идет на нагревание воды m=2,2 кг от температуры t 1 =10°С до t 2 =100°С, удельная теплоемкость воды с=4200 (Дж/кг·°С), из формулы для количества теплоты найдем Q 1 =cm 1 (t 2 -t 1)= 4200·2,2(100-10)=831600 Дж - количество теплоты необходимое для нагревания воды.
Зная, что КПД нагревателя равен 45%, найдем сколько тепла выделяет электрический нагреватель Q=Q 1 /0,45=1848000 Дж.
Из формулы Q=IUt выразим время t=Q/(IU)=1848000/(7·220)=1200 c = 20 минут.
Ответ: 20 минут.
Задание демонстрационного варианта ОГЭ 2019: На рисунке изображена схема электрической цепи, состоящей из трёх резисторов и двух ключей К 1 и К 2 . К точкам А и В приложено постоянное напряжение. Максимальное количество теплоты, выделяемое в цепи за 1 с, может быть получено,

1) если замкнут только ключ К 1
2) если замкнут только ключ К 2
3) если замкнуты оба ключа
4) если оба ключа разомкнуты
Решение: По закону Джоуля – Ленца , если напряжение постоянно, при уменьшении сопротивления, количество теплоты, выделяемое в цепи увеличивается. Следовательно, для того что бы количество теплоты выделяемое в цепи было максимально, необходимо уменьшить сопротивление цепи. При параллельном сопротивлении нескольких резисторов, их общее сопротивление меньше чем сопротивление отдельного резистора. Сопротивление будет минимальным при замыкании обоих ключей. Сопротивление будет минимальным, а количество теплоты выделяемое в цепи максимальным

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время dt через сечение проводника переносится заряд dq =Idt . Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по работа тока равна

dA=Udq =IU dt (13.28)

Если сопротивление проводника R, то, используя закон Ома, получим

Мощность тока

(13.30)

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идёт на его нагревание, и, по закону сохранения энергии,

(13.31)

Таким образом, используя выражение (13.28) и (13.31) , получим

(13.32)

Выражение представляет собой закон Джоуля-Ленца , экспериментально установленный независимо друг от друга Джоулем и Ленцом.

§ 13.7 Законы Ома и Джоуля-Ленца в дифференциальной форме.

Подставив выражение для сопротивления в закон Ома, получим

(13.33)

где величина , обратная удельному сопротивлению, называется удельной электрической проводимостью вещества проводника. Её единица – сименс на метр (См/м).

Учитывая, что
- напряжённость электрического поля в проводнике,
- плотность тока, формулу можно записать в виде

j = γE (13.34)

Закон Джоуля-Ленца в дифференциальноё форме

Выделим в проводнике элементарный цилиндрический объём dV=dSdℓ (ось цилиндра совпадает с направлением тока(рис.13.9)), сопротивление которого
. По закону Джоуля-Ленца, за время в этом объёме выделится теплота

(13.35)

Количество теплоты, выделившееся за единицу времени в единице объёма, называется удельной тепловой мощностью тока . Она равна

ω= ρ∙j 2 (13.36)

Используя дифференциальную форму закона Ома (j = γE) и соотношение , получим ω= j∙E=γ∙E 2 (13.37)

Примеры решения задач

Пример. Сила тока в проводнике равномерно растёт от I 0 =0 до I max =3А за время τ=6с. Определите заряд Q , прошедший по проводнику .

Дано: I 0 =0; I max =3А; τ=6с.

Найти: Q .

Решение. Заряд dQ, проходящий через поперечное сечение проводника за время dt,

По условию задачи сила тока растёт равномерно, т.е. I=kt , где коэффициент пропорциональности

.

Тогда можно записать

Проинтегрировав (1) и подставив выражение для k, найдём искомый заряд, прошедший по проводнику:

Ответ : Q=9 Кл.

Пример. По железному проводнику (ρ =7,87 г/см 3 , М=56∙10 -3 кг/моль) сечением S =0,5 мм 2 течёт ток I =0,1 А. определите среднюю скорость упорядоченного (направленного) движения электронов, считая, что число свободных электронов в единице объёма проводника равно числу атомов n " в единице объёма проводника

Дано: ρ=7,87 г/см 3 ,= 7,87∙10 3 кг/м 3 ; М=56∙10 -3 кг/моль; I=0,1A; S=0,5 мм 2 =0,5 10 -6 м 2 .

Найти: .

Решение . Плотность тока в проводнике

j=ne,

где - средняя скорость упорядоченного движения электронов в проводнике;n - концентрация электронов (число электронов в единице объёма); e=1,6∙10 -19 Кл – заряд электрона.

Согласно условию задачи,

(2)

(учли, что
, где – масса проводника; М – его молярная масса;N A = 6,02∙10 23 моль -1 – постоянная Авогадро;
- плотность железа).

Учитывая формулу (2) и то, что плотность тока
, выражение (1) можно записать в виде

,

Откуда искомая скорость упорядоченного движения электронов

Ответ: =14,8 мкм/с.

Пример. Сопротивление однородной проволоки R =36 Ом. Определите, на сколько равных отрезков разрезали проволоку, если после их параллельного соединения сопротивление оказалось равным R 1 =1Ом.

Дано R =36 Ом; R 1 =1 Ом .

Найти: N.

Решение. Неразрезанную проволоку можно представить как N последовательно соединённых сопротивлений. Тогда

где r – сопротивление каждого отрезка.

В случае параллельного соединения N отрезков проволок

или
(2)

Из выражений (1) и (2) найдём искомое число отрезков

Ответ: N=6

Пример. Определите плотность тока в медной проволоке длиной ℓ=100 м, если разность потенциалов на её концах φ 1 2 =10В. Удельное сопротивление меди ρ =17 нОм∙м.

Дано ℓ=100 м; φ 1 2 =10В; ρ =17 нОм∙м=1,7∙10 -8 Ом∙м .

Найти: j.

Решение. Согласно закону Ома в дифференциальной форме,

где
- удельная электрическая проводимость проводника;
- напряжённость электрического поля внутри однородного проводника, выраженная через разность потенциалов на концах проводника и его длину.

Подставив записанные формулы в выражение (1), найдём искомую плотность тока

Ответ: j=5,88 МА/м 2 .

Пример. Через лампу накаливания течёт ток I =1А, Температура вольфрамовой нити диаметром d 1 =0,2 мм равна 2000ºС. Ток подводится медными проводами сечением S 2 =5мм 2 . Определите напряжённость электростатического поля: 1) в вольфраме; 2) в меди. Удельное сопротивление вольфрама при 0ºС ρ 0 =55 нОм∙ м, его температурный коэффициент сопротивления α 1 =0,0045 град -1 , удельное сопротивление меди ρ 2 =17нОм∙ м.

Дано: I =1А; d 1 =0,2 мм=2∙10 -4 м; Т= 2000ºС; S 2 =5мм 2 =5∙10 -6 м 2 ; ρ 0 =55 нОм∙ м= 5,5∙10 -8 Ом∙м: α 1 =0,0045ºС -1 ; ρ 2 =17нОм∙ м=1,7∙10 -8 Ом∙м .

Найти: Е 1 ; Е 2 .

Решение. Согласно закону Ома в дифференциальной форме, плотность тока

(1)

где
- удельная электрическая проводимость проводника; Е – напряжённость электрического поля.

Удельное сопротивление вольфрама изменяется с температурой по линейному закону:

ρ=ρ 0 (1+αt). (2)

Плотность тока в вольфраме

(3)

Подставив выражение (2) и (3) в формулу (1) , найдём искомую напряжённость электростатического поля в вольфраме

.

Напряжённость электростатического поля в меди

(учли, что
).

Ответ: 1) Е 1 =17,5 В/м; 2) Е 2 =3,4 мВ/м.

Пример. По проводнику сопротивлением R =10Ом течёт ток, сила тока возрастает при этом линейно. Количество теплоты Q , выделившееся в проводнике за время τ =10с, равно 300 Дж. Определите заряд q , прошедший за это время по проводнику, если в начальный м омент времени сила тока в проводнике равна нулю.

Дано: R =10 Ом; τ=10с; Q =300Дж; I 0 =0.

Найти: q.

Решение. Из условия равномерности возрастания силы тока (при I 0 =0) следует, что I=kt, где k – коэффициент пропорциональности. Учитывая, что
, можем записать

dq=Idt=ktdt. (1)

Проинтегрируем выражение (1), тогда

(2)

Для нахождения коэффициента k запишем закон Джоуля-Ленца для бесконечного малого промежутка времени dt:

Проинтегрировав это выражение от0 до, получим количество теплоты, заданное в условии задачи:

,

Откуда найдём k:

. (3)

Подставив формулу (3) в выражение (2), определим искомый заряд

Ответ: q=15 Кл.

Пример. Определите плотность электрического тока в медном проводе (удельное сопротивление ρ=17нОм∙м), если удельная тепловая мощность тока ω=1,7Дж/(м 3 ∙с)..

Дано: ρ=17нОм∙м=17∙10 -9 Ом∙м; ω=1,7Дж/(м 3 ∙с).

Найти: j.

Решение. Согласно законам Джоуля-Ленца и Ома в дифференциальной форме,

(1)

, (2)

где γ и ρ – соответственно удельные и сопротивление проводника. Из закона (2) получим, что Е = ρj. Подставив это выражение в (1), найдём искомую плотность тока:

.

Ответ : j=10 кА/м 3 .

Пример. Определите внутреннее сопротивление источника тока, если во внешней цепи при сила тока I 1 =4А развивается мощность Р 1 =10 Вт, а при силе тока I 2 =6А – мощность Р 2 =12 Вт.

Дано: I 1 =4А; Р 1 =10 Вт; I 2 =6А; Р 2 =12 Вт.

Найти: r.

Решение. Мощность, развиваемая током,

и
(1)

где R 1 и R 2 – сопротивления внешней цепи.

Согласно закону Ома для замкнутой цепи,

;
,

где ε- ЭДС источника. Решив эти два уравнения относительно r, получим

(2)

Ответ : r=0,25 Ом.

Пример . В цепь, состоящую из источника ЭДС и резистора сопротивлением R =10Ом, включают вольтметр, сначала параллельно, а затем последовательно резистору, причём показания вольтметра одинаковы. Определите внутреннее сопротивление r источника ЭДС, если сопротивление вольтметра R V =500 Ом.

Дано: R =10 Ом; R V =500 Ом; U 1 = U 2 .

Найти: r.

Решение. Согласно условию задачи, вольтметр один раз подключают к резистору параллельно (рис.а), второй – последовательно (рис. б), причём его показания одинаковы.

Рассмотрим Закон Джоуля-Ленца и его применение.

При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника , в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: Q = А или Q = IUt .

Учитывая, что U = IR , в результате получаем формулу:

Q = I 2 Rt , где

Q — количество выделяемой теплоты (в Джоулях)
I — сила тока (в Амперах)
R — сопротивление проводника (в Омах)
t — время прохождения (в секундах)

Закон Джоуля–Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

Где применяется закон Джоуля-Ленца?

1. Например, в лампах накаливания и в электронагревательных приборах применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на определенном участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

2. Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии . Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

3. Также закон Джоуля-Ленца влияет на выбор проводов для цепей . Потому что при неправильном подборе проводов возможен сильный нагрев проводника, а также его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии.