Углеводы и их классификация. Углеводы. Классификация. Функции

БИОЛОГИЧЕСКАЯ РОЛЬ УГЛЕВОДОВ.

ПЕРЕВАРИВАНИЕ И ВСАСЫВАНИЕ.

СИНТЕЗ И РАСПАД ГЛИКОГЕНА.

Индивидуальное задание

студента биологического ф-та

группы 4120-2(б)

Менадиева Рамазана Исметовича

запорожье 2012

СОДЕРЖАНИЕ
1. Краткая справка об углеводах
2. Классификация углеводов
3. Структурно-функциональные особенности организации моно- и дисахари- дов: строение; нахождение в природе; получение; характеристика отдельных представителей
4. Биологическая роль биополимеров - полисахаридов
5. Химические свойства углеводов
6. Переваривание и всасывание

7. Синтез и распад гликогена
8. Выводы

9. Список литературы.

ВВЕДЕНИЕ

Органические соединения составляют в среднем 20-30 % массы клетки живого организма. К ним относятся биологические полимеры: белки, нуклеиновые кислоты, углеводы, а также жиры и ряд небольших молекул-гормонов, пигментов, АТФ и пр. В различные типы клеток входит неодинаковое количество органических соединений. В растительных клетках преобладают сложные углеводы-полисахариды, в животных - больше белков и жиров. Тем не менее, каждая из групп органических веществ в любом типе клеток выполняет сходные функции: обеспечивает энергией, является строительным материалом.

КРАТКАЯ СПРАВКА ОБ УГЛЕВОДАХ

Углеводы - органические соединения, состоящие из одной или многих молекул простых сахаров. Молярная масса углеводов колеблется в пределах от 100 до 1000000 Да (Дальтон-масса, приблизительно равная массе одного атома водорода). Их общую формулу обычно записывают в виде Сn (Н2О) n (где n - не меньше трех). Впервые в 1844 г. этот термин ввел отечественный ученый К. Шмид (1822-1894). Название «углеводы» возникло на основании анализа первых известных представителей этой группы соединений. Оказалось, что эти вещества состоят из углерода, водорода и кислорода, причем соотношение числа атомов водорода и кислорода у них такое же, как и в воде: на два атома водорода - один атом кислорода. Таким образом, их рассматривали как соединение углерода с водой. В дальнейшем стало известно много углеводов, не отвечающих этому условию, однако название «углеводы» до сих пор остается общепринятым. В животной клетке углеводы находятся в количестве, не превышающем 2-5 %. Наиболее богаты углеводами растительные клетки, где их содержание в некоторых случаях достигает 90 % сухой массы (например, в клубнях картофеля, семенах).

КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Выделяют три группы углеводов: моносахариды, или простые сахара (глюкоза, фруктоза); олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (сахароза, мальтоза); полисахариды, включающие более 10 молекул сахаров (крахмал, целлюлоза).

3. СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ОРГАНИЗАЦИИ МОНО- И ДИСАХАРИДОВ: СТРОЕНИЕ; НАХОЖДЕНИЕ В ПРИРОДЕ; ПОЛУЧЕНИЕ. ХАРАКТЕРИСТИКА ОТДЕЛЬНЫХ ПРЕДСТАВИТЕЛЕЙ

Моносахариды - это кетонные или альдегидные производные многоатомных спиртов. Атомы углерода, водорода и кислорода, входящие в их состав, находятся в соотношении 1:2:1. Общая формула для простых сахаров - (СН2О) n. В зависимости от длины углеродного скелета (количества атомов углерода), их разделяют на: триозы-С3, тетрозы-С4, пентозы-С5, гексозы-С6 и т. д. Кроме того, сахара разделяют на: - альдозы, имеющие в составе альдегидную группу, - С=О. К ним относится | Н глюкоза:

H H H H H
CH2OH - C - C - C - C - C
| | | | \\
OH OH OH OH OH

Кетозы, имеющие в составе кетонную группу, - C- . К ним, например, || относится фруктоза. В растворах все сахара, начиная с пентоз, имеют циклическую форму; в линейной же форме присутствуют только триозы и тетрозы. При образовании циклической формы атом кислорода альдегидной группы связывается ковалентной связью с предпоследним атомом углерода цепи, в результате образуются полуацетали (в случае альдоз) и полукетали (в случае кетоз).

ХАРАКТЕРИСТИКА МОНОСАХАРИДОВ, ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ

Из тетроз в процессах обмена наиболее важна эритроза. Этот сахар - один из промежуточных продуктов фотосинтеза. Пентозы встречаются в природных условиях главным образом как составные части молекул более сложно построенных веществ, например сложных полисахаридов, носящих название пентозанов, а также растительных камедей. Пентозы в значительном количестве (10-15 %) содержатся в древесине, соломе. В природе преимущественно встречается арабиноза. Она содержится в вишневом клее, свекле и аравийской камеди, откуда ее и получают. Рибоза и дезоксирибоза широко представлены в животном и растительном мире, это сахара, входящие в состав мономеров нуклеиновых кислот РНК и ДНК. Получают рибозу эпимеризацией арабинозы. Ксилоза образуется при гидролизе полисахарида ксилозана, содержащегося в соломе, отрубях, древесине, шелухе подсолнечника. Продуктами различных типов брожения ксилозы являются молочная, уксусная, лимонная, янтарная и другие кислоты. Организмом человека ксилоза усваивается плохо. Гидролизаты, содержащие ксилозу, используются для выращивания некоторых видов дрожжей, они в качестве белкового источника применяются для кормления сельскохозяйственных животных. При восстановлении ксилозы получают спирт ксилит, его используют как заменитель сахара для больных диабетом. Широко применяют ксилит как стабилизатор влажности и пластификатор (в бумажной промышленности, парфюмерии, производстве целлофана). Он является одним из основных компонентов при получении ряда поверхностно-активных веществ, лаков, клеев. Из гексозы наиболее широко распространены глюкоза, фруктоза, галактоза, их общая формула - С6Н12О6. Глюкоза (виноградный сахар, декстроза) содержится в соке винограда и других сладких плодов и в небольших количествах - в организмах животных и человека. Глюкоза входит в состав важнейших дисахаридов - тростникового и виноградного сахаров. Высокомолекулярные полисахариды, т. е. крахмал, гликоген (животный крахмал) и клетчатка, целиком построены из остатков молекул глюкозы, соединенных друг с другом различными способами. Глюкоза - первичный источник энергии для клеток. В крови человека глюкозы содержится 0,1-0,12 %, снижение показателя вызывает нарушение жизнедеятельности нервных и мышечных клеток, иногда сопровождаемое судорогами или обморочным состоянием. Уровень содержания глюкозы в крови регулируется сложным механизмом работы нервной системы и желез внутренней секреции. Одно из массовых тяжелых эндокринных заболеваний - сахарный диабет - связано с гипофункцией островковых зон поджелудочной железы. Сопровождается значительным снижением проницаемости мембраны мышечных и жировых клеток для глюкозы, что приводит к повышению содержания глюкозы в крови, а также в моче. Глюкозу для медицинских целей получают путем очистки - перекристаллизации - технической глюкозы из водных или водно-спиртовых растворов. Глюкоза используется в текстильном производстве и в некоторых других производствах в качестве восстановителя. В медицине чистая глюкоза применяется в виде растворов для введения в кровь при ряде заболеваний и в виде таблеток. Из нее получают витамин С. Галактоза вместе с глюкозой входит в состав некоторых гликозидов и полисахаридов. Остатки молекул галактозы входят в состав сложнейших биополимеров - ганглиозидов, или гликосфинголипидов. Они обнаружены в нервных узлах (ганглиях) человека и животных и содержатся также в ткани мозга, в селезенке в эритроцитах. Получают галактозу главным образом гидролизом молочного сахара. Фруктоза (фруктовый сахар) в свободном состоянии содержится во фруктах, меде. Входит в состав многих сложных сахаров, например тростникового сахара, из которого она может быть получена гидролизом. Образует сложно построенный высокомолекулярный полисахарид инулин, содержащийся в некоторых растениях. Фруктозу получают также из инулина. Фруктоза - ценный пищевой сахар; она в 1,5 раза слаще сахарозы и в 3 раза слаще глюкозы. Она хорошо усваивается организмом. При восстановлении фруктозы образуются сорбит и маннит. Сорбит применяют как заменитель сахара в питании больных диабетом; кроме того, его используют для производства аскорбиновой кислоты (витамин С). При окислении фруктоза дает винную и щавелевую кислоту.

Дисахариды - типичные сахароподобные полисахариды. Это твердые вещества, или некристаллизующиеся сиропы, хорошо растворимые в воде. Как аморфные, так и кристаллические дисахариды обычно плавятся в некотором интервале температур и, как правило, с разложением. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. Связь между двумя моносахаридами называют гликозидной связью. Обычно она образуется между первым и четвертым углеродными атомами соседних моносахаридных единиц (1,4-гликозидная связь). Этот процесс может повторяться бессчетное число раз, в результате чего и возникают гигантские молекулы полисахаридов. После того как моносахаридные единицы соединятся друг с другом, их называют остатками. Таким образом мальтоза состоит из двух остатков глюкозы. Среди дисахаридов наиболее широко распространены мальтоза (глюкоза + глюкоза), лактоза (глюкоза + галактоза), сахароза (глюкоза + фруктоза).

ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ ДИСАХАРИДОВ

Мальтоза (солодовый сахар) имеет формулу С12Н22О11. Название возникло в связи со способом получения мальтозы: ее получают из крахмала при воздействии солода (лат. maltum - солод). В результате гидролиза мальтоза расщепляется на две молекулы глюкозы:

С12Н22О11 + Н2О = 2С6Н12О6

Солодовый сахар является промежуточным продуктом при гидролизе крахмала, он широко распространен в растительных и животных организмах. Солодовый сахар значительно менее сладок, чем тростниковый (в 0,6 раза при одинаковых концентрациях). Лактоза (молочный сахар). Название этого дисахарида возникло в связи с его получением из молока (от лат. lactum - молоко). При гидролизе лактоза расщепляется на глюкозу и галактозу:

Лактозу получают из молока: в коровьем молоке ее содержится 4-5,5 %, в женском молоке - 5,5-8,4 %. Лактоза отличается от других сахаров отсутствием гигроскопичности: она не отсыревает. Молочный сахар применяется как фармацевтический препарат и питание для грудных детей. Лактоза в 4 или 5 раз менее сладка, чем сахароза. Сахароза (тростниковый или свекловичный сахара). Название возникло в связи с ее получением либо из сахарной свеклы, либо из сахарного тростника. Тростниковый сахар был известен за много столетий до нашей эры. Лишь в середине XVIII в. этот дисахарид был обнаружен в сахарной свекле и только в начале XIX в. он был получен в производственных условиях. Сахароза очень распространена в растительном мире. Листья и семена всегда содержат небольшое количество сахарозы. Она содержится также в плодах (абрикосах, персиках, грушах, ананасах). Ее много в кленовом и пальмовом соках, кукурузе. Это наиболее известный и широко применяемый сахар. При гидролизе из него образуются глюкоза и фруктоза:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

Смесь равных количеств глюкозы и фруктозы, получающаяся в результате инверсии тростникового сахара (в связи с изменением в процессе гидролиза правого вращения раствора на левое), называется инвертным сахаром (инверсия вращения). Природным инвертным сахаром является мед, состоящий в основном из глюкозы и фруктозы. Сахарозу получают в огромных количествах. Сахарная свекла содержит 16-20 % сахарозы, сахарный тростник - 14-26 %. Промытую свеклу измельчают и в аппаратах многократно извлекают сахарозу водой, имеющей температуру около 80 град. Полученную жидкость, содержащую, кроме сахарозы, большое количество различных примесей, обрабатывают известью. Известь осаждает в виде кальциевых солей ряд органических кислот, а также белки и некоторые другие вещества. Часть извести при этом образует с тростниковым сахаром растворимые в холодной воде кальциевые сахараты, которые разрушаются обработкой диоксидом углерода.

Осадок карбоната кальция отделяют фильтрацией, фильтрат после дополнительной очистки упаривают в вакууме до получения кашицеобразной массы. Выделившиеся кристаллы сахарозы отделяют при помощи центрифуг. Так получают сырой сахарный песок, имеющий желтоватый цвет, маточный раствор бурого цвета, некристаллизующийся сироп (свекловичная патока, или меласса). Сахарный песок очищают (рафинируют) и получают готовый продукт.

Еще в древние времена человечество познакомилось с углеводами и научилось использовать их в своей повседневной жизни. Хлопок, лен, древесина, крахмал, мед, тростниковый сахар – это всего лишь некоторые из углеводов, сыгравшие важную роль в развитие цивилизации. Углеводы относятся к числу наиболее распространенных в природе органических соединений. Они являются неотъемлемыми компонентами клеток любых организмов, в том числе бактерий, растений и животных. В растениях на долю углеводов приходится 80 – 90 % сухой массы, у животных – около 2 % массы тела. Их синтез из углекислого газа и воды осуществляется зелеными растениями с использованием энергии солнечного света (фотосинтез ). Суммарное стехиометрическое уравнение этого процесса имеет вид:

Затем глюкоза и другие простейшие углеводы превращаются в более сложные углеводы, например, крахмал и целлюлозу. Растения используют эти углеводы для высвобождения энергии в процессе дыхания. Этот процесс в сущности обратен процессу фотосинтеза:

Интересно знать! Зеленые растения и бактерии в процессе фотосинтеза ежегодно поглощают из атмосферы приблизительно 200 млрд. т углекислого газа. При этом происходит высвобождение в атмосферу около 130 млрд. т кислорода и синтезируется 50 млрд. т органических соединений углерода, в основном углеводов.

Животные не способны из углекислого газа и воды синтезировать углеводы. Потребляя углеводы с пищей, животные расходуют накопленную в них энергию для поддержания процессов жизнедеятельности. Высоким содержанием углеводов характеризуются такие виды нашей пищи, как хлебобулочные изделия, картофель, крупы и др.

Название «углеводы» является историческим. Первые представители этих веществ описывались суммарной формулой С m H 2 n O n или C m (H 2 O) n . Другое название углеводов – сахара – объясняется сладким вкусом простейших углеводов. По своей химической структуре углеводы – сложная и многообразная группа соединений. Среди них встречаются как достаточно простые соединения с молекулярной массой около 200, так и гигантские полимеры, молекулярная масса которых достигает нескольких миллионов. Наряду с атомами углерода, водорода и кислорода в состав углеводов могут входить атомы фосфора, азота, серы и, реже, других элементов.

Классификация углеводов

Все известные углеводы можно подразделить на две большие группы – простые углеводы и сложные углеводы . Отдельную группу составляют углеводсодержащие смешанные полимеры, например, гликопротеины – комплекс с молекулой белка, гликолипиды – комплекс с липидом, и др.

Простые углеводы (моносахариды, или монозы) являются полигидроксикарбонильными соединениями, не способными при гидролизе образовывать более простые углеводные молекулы. Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную – к классу кетоз (кетоспиртов). В зависимости от числа углеродных атомов в молекуле моносахаридов различают триозы (С 3), тетрозы (С 4), пентозы (С 5), гексозы (С 6) и т.д.:


Наиболее часто в природе встречаются пентозы и гексозы.

Сложные углеводы (полисахариды , или полиозы ) представляют собой полимеры, построенные из остатков моносахаридов. Они при гидролизе образуют простые углеводы. В зависимости от степени полимеризации их подразделяют на низкомолекулярные (олигосахариды , степень полимеризации которых, как правило, меньше 10) и высокомолекулярные . Олигосахариды – сахароподобные углеводы, растворимые в воде и сладкие на вкус. Их по способности восстанавливать ионы металлов (Cu 2+ , Ag +) делят на восстанавливающие и невосстанавливающие . Полисахариды в зависимости от состава можно также разделить на две группы: гомополисахариды и гетерополисахариды . Гомополисахариды построены из моносахаридных остатков одного типа, а гетерополисахариды – из остатков разных моносахаридов.

Сказанное с примерами наиболее распространенных представителей каждой группы углеводов можно представить в виде следующей схемы:


Функции углеводов

Биологические функции полисахаридов весьма разнообразны.

Энергетическая и запасающая функция

В углеводах заключено основное количество калорий, потребляемых человеком с пищей. Основным углеводом, поступающим с пищей, является крахмал. Он содержится в хлебобулочных изделиях, картофеле, в составе круп. В рационе человека присутствуют также гликоген (в печени и мясе), сахароза (в качестве добавок к различным блюдам), фруктоза (во фруктах и меде), лактоза (в молоке). Полисахариды, прежде чем усвоиться организмом, должны быть гидролизованы с помощью пищеварительных ферментов до моносахаридов. Только в таком виде они всасываются в кровь. С током крови моносахариды поступают к органам и тканям, где используются для синтеза своих собственных углеводов или других веществ, либо подвергаются расщеплению с целью извлечения из них энергии.

Освобождающаяся в результате расщепления глюкозы энергия накапливается в виде АТФ. Различают два процесса распада глюкозы: анаэробный (в отсутствие кислорода) и аэробный (в присутствии кислорода). В результате анаэробного процесса образуется молочная кислота

которая при тяжелых физических нагрузках накапливается в мышцах и вызывает боль.

В результате же аэробного процесса глюкоза окисляется до оксида углерода (IV) и воды:

В результате аэробного распада глюкозы освобождается значительно больше энергии, чем в результате анаэробного. В целом при окислении 1 г углеводов выделяется 16,9 кДж энергии.

Глюкоза может подвергаться спиртовому брожению. Этот процесс осуществляется дрожжами в анаэробных условиях:

Спиртовое брожение широко используется в промышленности для производства вин и этилового спирта.

Человек научился использовать не только спиртовое брожение, но и нашел применение молочнокислому брожению, например, для получения молочнокислых продуктов и квашения овощей.

В организме человека и животных нет ферментов, способных гидролизовать целлюлозу, тем не менее целлюлоза является основным компонентом пищи для многих животных, в частности, для жвачных. В желудке этих животных в больших количествах содержатся бактерии и простейшие, продуцирующие фермент целлюлазу , катализирующий гидролиз целлюлозы до глюкозы. Последняя может подвергаться дальнейшим превращениям, в результате которых образуются масляная, уксусная, пропионовая кислоты, способные всасываться в кровь жвачных.

Углеводы выполняют и запасную функцию. Так, крахмал, сахароза, глюкоза у растений и гликоген у животных являются энергетическим резервом их клеток.

Структурная, опорная и защитная функции

Целлюлоза у растений и хитин у беспозвоночных и в грибах выполняют опорную и защитную функции. Полисахариды образуют капсулу у микроорганизмов, укрепляя тем самым мембрану. Липополисахариды бактерий и гликопротеины поверхности животных клеток обеспечивают избирательность межклеточного взаимодействия и иммунологических реакций организма. Рибоза служит строительным материалом для РНК, а дезоксирибоза – для ДНК.

Защитную функцию выполняет гепарин . Этот углевод, являясь ингибитором свертывания крови, предотвращает образование тромбов. Он содержится в крови и соединительной ткани млекопитающих. Клеточные стенки бактерий, образованные полисахаридами, скреплены короткими аминокислотными цепочками, защищают бактериальные клетки от неблагоприятных воздействий. Углеводы участвуют у ракообразных и насекомых в построение наружного скелета, выполняющего защитную функцию.

Регуляторная функция

Клетчатка усиливает перистальтику кишечника, улучшая этим пищеварение.

Интересна возможность использования углеводов в качестве источника жидкого топлива – этанола. С давних пор использовали древесину для обогрева жилищ и приготовления пищи. В современном обществе этот вид топлива вытесняется другими видами – нефтью и углем, более дешевыми и удобными в использовании. Однако растительное сырье, несмотря на некоторые неудобства в использовании, в отличие от нефти и угля является возобновляемым источником энергии. Но его применение в двигателях внутреннего сгорания затруднено. Для этих целей предпочтительнее использовать жидкое топливо или газ. Из низкосортной древесины, соломы или другого растительного сырья, содержащих целлюлозу или крахмал, можно получить жидкое топливо – этиловый спирт. Для этого необходимо вначале гидролизовать целлюлозу или крахмал и получить глюкозу:

а затем полученную глюкозу подвергнуть спиртовому брожению и получить этиловый спирт. После очистки его можно использовать в виде топлива в двигателях внутреннего сгорания. Надо отметить, что в Бразилии с этой целью ежегодно из сахарного тростника, сорго и маниока получают миллиарды литров спирта и используют его в двигателях внутреннего сгорания.

В самом общем смысле к этому классу можно отнести сахара и производные от них вещества, которые получаются при гидролизе. Углеводы являются неотъемлемой составляющей всех органических соединений. Обо всем разнообразии проявления этих веществ может рассказать классификация углеводов.

Биология

Клеткам живых организмов углеводы нужны в качестве аккумуляторов и источников энергии. В сухом веществе растений содержится до 90 % углеводов. Представители фауны также имеют в составе своих клеток углеводы - до 20% от общей массы сухого вещества. Классификация углеводов стандартизирует эти высокомолекулярные соединения и представляет их в наглядном виде. Понимание структуры углеводов, внутреннего строения этих соединений - ключ к постижению основ всего живого, к пониманию самой тайны жизни. Важной частью процесса познания этих веществ является классификация углеводов.

Схема

Все известные углеводы подразделяют на три большие группы:

Моносахариды;

Дисахариды;

Полисахариды.

Все три группы имеют различные физико-химические характеристики. Классификация и строение углеводов базируется именно на этих трех китах.

Моносахариды

Целлюлоза же не растворяется в воде даже при высокой температуре. Она не растворяется в спиртах, устойчива к воздействию щелочей и слабых окислителей. Гидролиз целлюлозы возможен лишь при растворении ее в концентрированных минеральных кислотах, например в серной. При нагревании такого раствора целлюлоза расщепляется, образуя вязкий раствор. Конечным продуктом данной реакции являются моносахариды.

Значение углеводов

Классификация и строение углеводов изучается многими смежными науками. Значение этих органических веществ в медицине, химической, пищевой, обрабатывающей промышленности достаточно высоко. Можно надеяться, что вышеприведенная классификация углеводов с примерами даст общее представление о природе этих веществ и об их важнейшей роли в хозяйственной деятельности человека.

Для организма человека, равно как и остальных живых существ, необходима энергия. Без нее невозможно протекание никаких процессов. Ведь каждая биохимическая реакция, любой ферментативный процесс или этап метаболизма нуждается в энергетическом источнике.

Поэтому значение веществ, предоставляющих организму силы на жизнь, очень велико и важно. Какие же это вещества? Углеводы, белки, каждого из них различно, они относятся к совершенно разным классам химических соединений, но одна из их функций схожа - обеспечение организма необходимой энергией для жизнедеятельности. Рассмотрим одну группу из перечисленных веществ - углеводы.

Классификация углеводов

Состав и строение углеводов с момента их открытия определялись их названием. Ведь, по ранним источникам, считалось, что это такая группа соединений, в структуре которых присутствуют атомы углерода, связанные с молекулами воды.

Более тщательный анализ, а также накопленные сведения о разнообразии данных веществ позволили доказать, что не все представители имеют только такой состав. Однако этот признак по-прежнему один из тех, что определяет строение углеводов.

Современная классификация данной группы соединений выглядит следующим образом:

  1. Моносахариды (рибоза, фруктоза, глюкоза и так далее).
  2. Олигосахариды (биозы, триозы).
  3. Полисахариды (крахмал, целлюлоза).

Также все углеводы можно разделить на две следующие большие группы:

  • восстанавливающие;
  • невосстанавливающие.

Строение молекул углеводов каждой группы рассмотрим подробнее.

Моносахариды: характеристика

К данной категории относятся все простые углеводы, которые содержат альдегидную (альдозы) или кетонную (кетозы) группировку и не больше 10 атомов углерода в строении цепи. Если смотреть по количеству атомов в основной цепи, то моносахариды можно разделить на:

  • триозы (глицериновый альдегид);
  • тетрозы (эритрулоза, эритроза);
  • пентозы (рибоза и дезоксирибоза);
  • гексозы (глюкоза, фруктоза).

Все остальные представители имеют не столь важное значение для организма, как перечисленные.

Особенности строения молекул

По своему строению монозы могут быть представлены как в виде цепочки, так и в форме циклического углевода. Как это происходит? Все дело в том, что центральный атом углерода в соединении является ассиметрическим центром, вокруг которого молекула в растворе способна вращаться. Так формируются оптические изомеры моносахаридов L- и D-формы. При этом формулу глюкозы, записанную в виде прямой цепочки, можно мысленно ухватить за альдегидную группировку (или кетонную) и свернуть в клубок. Получится соответствующая циклическая формула.

Углеводов ряда моноз достаточно простое: ряд углеродных атомов, образующих цепь или цикл, от каждого из которых по разные или по одну сторону располагаются гидроксильные группировки и атомы водорода. Если все одноименные структуры по одну сторону, то тогда формируется D-изомер, если по разные с чередованием друг друга - тогда L-изомер. Если записать общую формулу самого распространенного представителя моносахаридов глюкозы в молекулярном виде, то она будет иметь вид: С 6 Н 12 О 6 . Причем эта запись отражает строение и фруктозы тоже. Ведь химически эти две монозы - структурные изомеры. Глюкоза - альдегидоспирт, фруктоза - кетоспирт.

Строение и свойства углеводов ряда моносахаридов тесно взаимосвязаны. Ведь из-за наличия альдегидной и кетонной группировки в составе структуры они относятся к альдегидо- и кетоноспиртам, что и определяет их химическую природу и реакции, в которые они способны вступать.

Так, глюкоза проявляет следующие химические свойства:

1. Реакции, обусловленные наличием карбонильной группы:

  • окисление - реакция "серебряного зеркала";
  • со свежеосажденным (II) - альдоновая кислота;
  • сильные окислители способны сформировать двухосновные кислоты (альдаровые), преобразуя не только альдегидную, но и одну гидроксильную группировку;
  • восстановление - преобразуется в многоатомные спирты.

2. В молекуле присутствуют и гидроксильные группы, что отражает строение. Свойства углеводов, на которые влияют данные группировки:

  • способность к алкилированию - образованию простых эфиров;
  • ацилирование - формирование ;
  • качественная реакция на гидроксид меди (II).

3. Узкоспецифические свойства глюкозы:

  • маслянокислое;
  • спиртовое;
  • молочнокислое брожение.

Выполняемые функции в организме

Строение и функции углеводов ряда моноз тесно связаны. Последние заключаются, прежде всего, в участии в биохимических реакциях живых организмов. Какую же роль играют моносахариды в этом?

  1. Основа для производства олиго- и полисахаридов.
  2. Пентозы (рибоза и дезоксирибоза) - важнейшие молекулы, участвующие в образовании АТФ, РНК, ДНК. А они, в свою очередь, главные поставщики наследственного материала, энергии и белка.
  3. Концентрационное содержание глюкозы в крови человека - верный показатель осмотического давления и его изменений.

Олигосахариды: строение

Строение углеводов данной группы сводится к наличию двух (диозы) или трех (триозы) молекул моносахаридов в составе. Существуют и те, в составе которых 4, 5 и более структур (до 10), однако самыми распространенными являются дисахариды. То есть при гидролизе такие соединения распадаются с образованием глюкозы, фруктозы, пентозы и так далее. Какие соединения относятся к этой категории? Типичный пример - (обычный тростниковый (основной компонент молока), мальтоза, лактулоза, изомальтоза.

Химическое строение углеводов этого ряда обладает следующими особенностями:

  1. Общая формула молекулярного вида: С 12 Н 22 О 11.
  2. Два одинаковых или разных остатка монозы в структуре дисахарида соединяются между собой при помощи гликозидного мостика. От характера этого соединения будет зависеть восстанавливающая способность сахара.
  3. Восстанавливающие дисахариды. Строение углеводов данного типа заключается в образовании гликозидного мостика между гидроксилом альдегидной и гидроксильной группы разных молекул моноз. Сюда относятся: мальтоза, лактоза и так далее.
  4. Невосстанавливающие - типичный пример сахароза - когда мостик формируется между гидроксилами только соответствующих групп, без участия альдегидной структуры.

Таким образом, строение углеводов кратко можно представить в виде молекулярной формулы. Если же необходима подробная развернутая структура, то изобразить ее можно с помощью графических проекций Фишера или формул Хеуорса. А конкретно два циклических мономера (монозы) либо разные, либо одинаковые (зависит от олигосахарида), соединенные между собой гликозидным мостиком. При построении следует учитывать восстанавливающую способность для правильного отображения связи.

Примеры молекул дисахаридов

Если задание стоит в форме: "Отметьте особенности строения углеводов", то для дисахаридов лучше всего сначала указать, из каких остатков моноз он состоит. Самые распространенные типы такие:

  • сахароза - построена из альфа-глюкозы и бетта-фруктозы;
  • мальтоза - из остатков глюкозы;
  • целлобиоза - состоит из двух остатков бетта-глюкозы D-формы;
  • лактоза - галактоза + глюкоза;
  • лактулоза - галактоза + фруктоза и так далее.

Затем по имеющимся остаткам следует составлять структурную формулу с четким прописыванием типа гликозидного мостика.

Значение для живых организмов

Очень велика и роль дисахаридов, важно не только строение. Функции углеводов и жиров в целом схожи. В основе лежит энергетическая составляющая. Тем не менее для некоторых отдельных дисахаридов следует указать их особое значение.

  1. Сахароза - главный источник глюкозы в организме человека.
  2. Лактоза содержится в грудном молоке млекопитающих, в том числе в женском до 8 %.
  3. Лактулоза получается в лаборатории для использования в медицинских целях, а также добавляется в производстве молочных продуктов.

Любой дисахарид, трисахарид и так далее в организме человека и других существ подвергается моментальному гидролизу с образованием моноз. Именно эта особенность и лежит в основе использования этого класса углеводов человеком в сыром, неизменном виде (свекловичный или тростниковый сахар).

Полисахариды: особенности молекул

Функции, состав и строение углеводов данного ряда имеют большое значение для организмов живых существ, а также для хозяйственной деятельности человека. Во-первых, следует разобраться, какие же углеводы относятся к полисахаридам.

Их достаточно много:

  • крахмал;
  • гликоген;
  • муреин;
  • глюкоманнан;
  • целлюлоза;
  • декстрин;
  • галактоманнан;
  • муромин;
  • амилоза;
  • хитин.

Это не полный список, а только самые значимые для животных и растений. Если выполнять задание "Отметьте особенности строения углеводов ряда полисахаридов", то в первую очередь следует обратить внимание на их пространственную структуру. Это очень объемные, гигантские молекулы, состоящие из сотен мономерных звеньев, сшитых между собой гликозидными химическими связями. Зачастую строение молекул углеводов полисахаридов представляет собой слоистые композиции.

Существует определенная классификация таких молекул.

  1. Гомополисахариды - состоят из одинаковых многократно повторяющихся звеньев моносахаридов. В зависимости от монозы могут быть гексозами, пентозами и так далее (глюканы, маннаны, галактаны).
  2. Гетерополисахариды - образованы разными мономерными звеньями.

К соединениям с линейной пространственной структурой следует относить, например, целлюлозу. Разветвленное строение имеет большинство полисахаридов - крахмал, гликоген, хитин и так далее.

Роль в организме живых существ

Строение и функции углеводов этой группы тесно связаны с жизнедеятельностью всех существ. Так, например, растения в виде запасного питательного вещества накапливают в разных частях побега или корня крахмал. Основной источник энергии для животных - опять же полисахариды, при расщеплении которых образуется достаточно много энергии.

Углеводы в играют очень значимую роль. Из хитина состоит покров многих насекомых и ракообразных, муреин - компонент клеточной стенки бактерий, целлюлоза - основа растений.

Запасное питательное вещество животного происхождения - это молекулы гликогена, или, как его чаще называют, животного жира. Он запасается в отдельных частях организма и выполняет не только энергетическую, но и защитную функцию от механических воздействий.

Для большинства организмов имеет большое значение строение углеводов. Биология каждого животного и растения такова, что требует постоянного источника энергии, неиссякаемого. А это могут дать только они, причем больше всего именно в форме полисахаридов. Так, полное расщепление 1 г углевода в результате метаболических процессов приводит к высвобождению 4,1 ккал энергии! Это максимум, больше не дает ни одно соединение. Именно поэтому углеводы обязательно должны присутствовать в рационе любого человека и животного. Растения же заботятся о себе сами: в процессе фотосинтеза они формируют внутри себя крахмал и запасают его.

Общие свойства углеводов

Строение жиров, белков и углеводов в целом похоже. Ведь все они являются макромолекулами. Даже некоторые их функции имеют общую природу. Следует обобщить роль и значение всех углеводов в жизни биомассы планеты.

  1. Состав и строение углеводов подразумевают использование их в качестве строительного материала для оболочки растительных клеток, мембраны животных и бактериальных, а также образования внутриклеточных органелл.
  2. Защитная функция. Характерна для растительных организмов и проявляется в формировании у них шипов, колючек и так далее.
  3. Пластическая роль - образование жизненно важных молекул (ДНК, РНК, АТФ и других).
  4. Рецепторная функция. Полисахариды и олигосахариды - активные участники транспортных переносов через клеточную мембрану, "стражи", улавливающие воздействия.
  5. Энергетическая роль самая значимая. Предоставляет максимум энергии для всех внутриклеточных процессов, а также работы всего организма в целом.
  6. Регуляция осмотического давления - глюкоза осуществляет такой контроль.
  7. Некоторые полисахариды становятся запасным питательным веществом, источником энергии для животных существ.

Таким образом, очевидно, что строение жиров, белков и углеводов, их функции и роль в организмах живых систем имеют решающее и определяющее значение. Данные молекулы - создатели жизни, они же ее сохраняют и поддерживают.

Углеводы с другими высокомолекулярными соединениями

Также известна роль углеводов не в чистом виде, а в сочетании с другими молекулами. К таким можно отнести такие самые распространенные, как:

  • гликозаминогликаны или мукополисахариды;
  • гликопротеины.

Строение и свойства углеводов такого вида достаточно сложное, ведь в комплекс соединяются самые разные функциональные группы. Основная роль молекул этого типа - участие во многих жизненных процессах организмов. Представителями являются: гиалуроновая кислота, хондроитинсульфат, гепаран, кератан-сульфат и другие.

Также существуют комплексы полисахаридов с другими биологически активными молекулами. Например, гликопротеиды или липополисахариды. Их существование имеет важное значение при формировании иммунологических реакций организма, так как они входят в состав клеток лимфатической системы.

Реферат

«Физиологическое значение углеводов и их общая характеристика»

Выполнил(а): студентка II курса

Факультет: Агротехнологий, земельных ресурсов

и пищевых производств

Направление: ТП и ООП

ресторанный бизнес

Хастаева Ольга Андреевна

Ульяновск, 2015

1. Введение…………………………………………………………………………3

2. Классификация углеводов……………………………………………………...3

2.1. Моносахариды…………………………………………………………..4

2.2. Дисахариды……………………………………………………………...4

2.3. Олигосахариды………………………………………………………….5

2.4. Полисахариды…………………………………………………………...5

3. Пространственная изомерия……………………………………………………8

4. Биологическая роль……………………………………………………………..8

5. Биосинтез………………………………………………………………………..9

6. Важнейшие источники………………………………………………………...10

7. Физиологическое значение углеводов………………………………………..11

8. Список использованной литературы………………………………………….13

Введение

Структурная формула лактозы - содержащегося в молоке дисахарида

Углеводы - органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой C x (H 2 O) y , формально являясь соединениями углерода и воды.

Сахара - другое название низкомолекулярных углеводов (моносахаридов, дисахаридов и полисахаридов).

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы - весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2-3 % массы животных.

Классификация углеводов

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц - олигосахариды, а более десяти - полисахариды. Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.



Моносахариды

Распространённый в природе моносахарид - бета-D-глюкоза.

Моносахари́ды (от греческого monos - единственный, sacchar - сахар) - простейшие углеводы, не гидролизующиеся с образованием более простых углеводов - обычно представляют собой бесцветные, легко растворимые в воде, плохо - в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения, одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза . При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза . В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы , тетрозы , пентозы ,гексозы , гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы. Моносахариды - стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C 6 H 12 O 6) - структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридоя.

Дисахариды

Мальтоза (солодовый сахар) - природный дисахарид, состоящий из двух остатков глюкозы.

Дисахариды (от di - два, sacchar - сахар) - сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных.

Олигосахариды

Рафиноза - природный трисахарид, состоящий из остатков D-галактозы, D-глюкозы и D-фруктозы.

Олигосахариды (от греч. ὀλίγος - немногий) - углеводы, молекулы которых синтезированы из 2 - 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных - гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза - невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы - в больших количествах содержится в сахарной свёкле и во многих других растениях.

Полисахариды

Полисахариды - общее название класса сложных высокомолекулярных углеводов , молекулы которых состоят из десятков, сотен или тысяч мономеров - моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.

Гомополисахариды (гликаны ), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны ) происхождения.

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахмал (C 6 H 10 O 5) n - смесь двух гомополисахаридов: линейного - амилозы и разветвлённого - амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде. Молекулярная масса 10 5 -10 7 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10-30 %, амилопектина - 70-90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины (C 6 H 10 O 5) p , а при полном гидролизе -глюкоза.

Гликоген (C 6 H 10 O 5) n - полисахарид, построенный из остатков альфа-D-глюкозы - главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 10 5 -10 8 Дальтон и выше. В организмах животных является структурным и функциональным аналогом полисахарида растений - крахмала . Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован - сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100-120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) - наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном - D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу.

Хити́н - структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих - насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой.

Пекти́новые вещества́ - полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид».

Мурами́н (лат. múrus - стенка) - полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе.

Декстраны - полисахариды бактериального происхождения - синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»:Полиглюкин и другие).