Строение включений клетки. Включения, их классификация, химическая и морфофункциональная характеристика. Реакция клеток на внешнее воздействие. Регенерация. Виды смерти клеток. Апоптоз. Что относится к клеточным включениям, какова их роль в клетке

Включения – непостоянные и необязательные компоненты клеток. Могут содержать разнообразные химические вещества.

Включения делятся на:

Трофические (запас питательных веществ),Трофические включения . Это структуры, в которых клетки и организм в целом запасают питательные вещества, необходимые в условиях энергетического дефицита, недостатка структурных молекул (при голодании). Примером трофических включений служат гранулы с гликогеном (печеночные клетки, мышечные клетки и симпласты), липидные включения в жировых и других клетках.

Секреторные (вещества, предназначенные для секреции),Секреторные включения . Представляют собой секреторные гранулы, которые выделяются из клетки путем экзоцитоза. По химическому составу их подразделяют на белковые (серозные), жировые (липидные, или липосомы), слизистые (содержат мукополисахариды) и др. Количество включений зависит от функциональной активности клетки, стадии секреторного цикла, степени зрелости клетки. Особенно много гранул в дифференцированных, функционально активных клетках в фазу накопления секреторного цикла.

Экскреторные (продукты метаболизма, предназначенные для выведения из клетки),Экскреторные включения . Это включения веществ, захватываемых клеткой из внутренней среды и выводимых из организма: токсические вещества, продукты метаболизма, инородные структуры. Нередко экскреторные включения встречаются в эпителии канальцев почки, в первую очередь в проксимальных. Проксимальные канальцы выводят ненужные организму вещества, которые не могут быть отфильтрованы через клубочковый аппарат.

Пигментные (пигменты).Пигментные включения . Этот тип включений придает окраску клеткам; обеспечивает защитную функцию, например, гранулы меланина в пигментных клетках кожи предохраняют от солнечных ожогов. Пигментные включения могут состоять из продуктов жизнедеятельности клетки: гранулы с липофусцином в нейронах, гемосидерин в макрофагах.

Понятие о жизненном цикле клетки: стадии и их морфофункциональная характеристика. Особенности жизненного цикла у различных видов клеток. Регуляция жизненного цикла: понятие, классификация факторов, регулирующих пролиферативную активность.

В жизненном цикле любой клетки различают 5 периодов: фаза роста и размножения в недифференцированном состоянии, фаза дифференцировки, фаза нормальной активности, фаза старения и терминальная фаза дезинтеграции и смерти.

Рост и размножение . Сразу же после своего «появления на свет» в момент деления материнской клетки дочерняя клетка начинает вырабатывать белки в соответствии с типом, предписанным ей генетическим кодом. Клетка растет, сохраняя при этом недифференцированный характер эмбриональной клетки - это период роста.

Дифференцировка . Возможен и другой тип развития. После начального роста и размножения клетка начинает дифференцироваться, т.е. морфологически и функционально специализироваться. Процесс дифференцировки, обусловленный одновременно действием генов и влиянием внешней среды, вначале в течение некоторого времени обратим. Его можно приостановить, воздействуя различными факторами.

Процесс дифференцировки - это развитие из однородного клеточного материала резко отличающихся друг от друга клеток и тканей различных органов. Дифференцированные клетки характеризуются своими морфологическими и особыми функциональными свойствами. Эти свойства обусловлены структурными и энзиматическими особенностями их специфических белков. Некоторые эмбриональные дифференцировки клеток и даже органов зависят от свойства клеточных мембран; свойства эти связаны со структурными и функциональными характеристиками белка. Таким образом, в основе всякой дифференцировки лежат структурные изменения белка, дифферен-цировка представляет собой процесс направленного изменения.

Гибель клетки - постепенный процесс: вначале в клетке возникают обратимые повреждения, совместимые с жизнью; затем повреждения приобретают необратимый характер, но некоторые функции клетки сохраняются, и, наконец, наступает полное прекращение всех функций.

Уровни и формы организации живого. Определение ткани. Эволюция тканей. Морфофункциональная классификация тканей по Келликеру и Лейдигу. Структурные элементы тканей. Понятие о стволовых клетках, популяциях клеток и дифферонах. Классификация тканей согласно теории дифферонного строения.

Системно-структурные уровни организации многообразных форм живого достаточно многочисленны: молекулярный , субклеточный, клеточный, органотканевый, организменный, популяционный, видовой, биоценотический, биогеоценотический, биосферный. Могут быть определены и другие уровни. Но во всем многообразии уровней выделяются некоторые основные. Критерием выделения основных уровней выступают специфические дискретные структуры и фундаментальные биологические взаимодействия. На основании этих критериев достаточно четко выделяются следующие уровни организации живого: молекулярно-генетический, организменный, популяционно-видовой, биогеоценотический.

Ткань - это возникшая в эволюции частная система организма, которая состоит из одного или нескольких дифферонов клеток и их производных и обладает специфическими функциями благодаря кооперативной деятельности всех её элементов.
Все ткани делятся на 4 морфофункциональные группы: I. эпителиальные ткани (куда относятся и железы); II.ткани внутренней среды организма - кровь и кроветворные ткани, соединительные ткани; III. мышечные ткани, IV. нервная ткань. Внутри этих групп (кроме нервной ткани) различают те или иные виды тканей. Например, мышечные ткани подразделяются, в основном, на 3 вида: скелетную, сердечную и гладкую мышечные ткани. Ещё более сложными являются группы эпителиальных и соединительных тканей. Ткани, принадлежащие к одной группе, могут иметь разное происхождение. Например, эпителиальные ткани происходят из всех трёх зародышевых листков. Таким образом, тканевая группа - это совокупность тканей, имеющих сходные морфофункциональные свойства независимо от источника их развития. В образовании ткани могут принимать участие следующие элементы: клетки, производные клеток (симпласты, синцитии), постклеточные структуры (такие, как эритроциты и тромбоциты), межклеточное вещество (волокна и матрикс). Каждая ткань отличается определённым составом таких элементов. Например, скелетная мышечная ткань - это лишь симпласты (мышечные волокна. Этот состав обуславливает специфические функции каждой ткани. Причём, выполняя эти функции, элементы тканей обычно тесно взаимодействуют между собой, образуя единое целое.
морфофункциональная классификация Келликера и Лейдига, созданная ими в середине пршлого столетия. Согласно этой классификации

различают следующие 4 группы тканей:

1.Эпителиальные или покровные ткани,объединяющиеся на основании морфологических признаков.

2.Ткани внутренней среды , включающие в себя кровь, лимфу, костную, хрящевую и собственно соединительную ткани. Все эти ткани объединяются в одну группу по двум признакам. по общности строения (все они состоят из клеток и межклеточного вещества) и происхождения (все они развиваются из мезенхимы).

3.Мышечные ткани (гладкая, поперечно-полосатая, сердечная, миоэпителиальные клетки и мионевральные элементы). Ткани этой группы обладают одной функцией – сократимостью, но происхождение и строение их разное.

4.Нервная ткань. Эта ткань представлена различными гистологическими элементами клетками и глией. Единственным общим признаком для нервных клеток и глиальных элементов является их постоянное совместное расположение, т.е. топографический признак. Нервная ткань обеспечивает интегративную функцию, т.е. обеспечивает единство организма.

Живучесть этой классификации объясняется тем, что она отражает различные связи организма с внешней средой, а также внутри самого организма.

СТРУКТУРНЫЕ ЭЛЕМЕНТЫ ТКАНЕЙ:

Ткани состоят из клеток и межклеточного вещества. Клетки находятся во взаимодействии друг с другом и межклеточным веществом. Это обеспечивает функционирование ткани как единой системы. В состав органов входят различные ткани (одни образуют строму, другие – паренхиму). Каждая ткань имеет или имела в эмбриогенезе стволовые клетки.

СИМПЛАСТ – неклеточная многоядерная структура. Два способа образования: путем объединения клеток, между которыми исчезают клеточные границы; в результате деления ядер без цитотомии (образования перетяжки). Например скелетная мышечная ткань.

МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО – продукт жизнедеятельности клеток. Состоит из двух частей: аморфное (основное) вещество (гелеозоль, протеогликаны, ГАГ, гликопротеиды) и волокна (коллагеновые определяют прочность на разрыв, эластические – прочность на растяжение, ретикулярные – коллаген 3 типа)

Теории дифференного строения тканей . Согласно этой теории все ткани нашего организма состоят из одного или нескольких дифферонов. Клеточный дифферон – это совокупность клеточных форм, составляющих линию дифференцировки. Клеточный дифферон образуют клетки возрастающей степени зрелости одного гистогенетического ряда. Исходной формой линии клеточной дифференцировки (клеточного дифферона) служат стволовые клетки. Все ткани нашего организма имеют или имели в эмбриональном периоде стволовые клетки. Стволовые клетки являются малодифференцированными, т.е. они не прошли путь дифференцировки до конца.

При делении стволовой клетки она стоит перед выбором остаться стволовой клеткой, какой была родительская, или встать на путь, ведущий к полной дифференцировке. Установлено, что стволовая клетка может делиться симметрично и ассимметрично. При симметричном делении образуются из 1 стволовой клетки две новых стволовых клеток Следующие стадии гистогенетического ряда образуют субстволовые (коммитированные) клетки-предшественники, которые могут дифференцироваться только в одном направлении. Дифферон заканчивается стадией зрелых функционирующих клеток. Различают основные (полные) и неполные диффероны в составе ткани Условно в составе клеточного дифферона можно выделить начальную камбиальную часть, среднюю дифференцирующуюся часть и конечную – высоко дифференцирующуюся часть, в которых степень пролиферативной активности клеток различна.

  • 2. Дайте определение жизни. Охарактеризуйте свойства живого. Назовите формы жизни.
  • 3. Эволюционно-обусловленные уровни организации биологических систем.
  • 4. Обмен веществ. Ассимиляция у гетеротрофов и ее фазы.
  • 5. Обмен веществ. Диссимиляция. Этапы диссимиляции в гетеротрофной клетке. Внутриклеточный поток: информации, энергии и вещества.
  • 6. Окислительное фосфорилирование (оф). Разобщение оф и его медицинское значение. Лихорадка и гипертермия. Сходства и различия.
  • 9. Основные положения клеточной теории Шлейдена и Шванна. Какие дополнения внес в эту теорию Вирхов? Современное состояние клеточной теории.
  • 10. Химический состав клетки
  • 11. Типы клеточной организации. Строение про- и эукариотических клеток. Организация наследственного материала у про- и эукариот.
  • 12. Сходство и различие растительной и животной клетки. Органоиды специального и общего назначения.
  • 13. Биологические мембраны клетки. Их свойства, строение и функции.
  • 14. Механизмы транспорта вещества через биологические мембраны. Экзоцитоз и Эндоцитоз. Осмос. Тургор. Плазмолиз и деплазмолиз.
  • 15. Физико-химические свойства гиалоплазмы. Ее значение в жизнедеятельности клетки.
  • 16. Что такое органеллы? Какова их роль в клетке? Классификация органелл.
  • 17. Мембранные органеллы. Митохондрии, их структура и функции.
  • 18. Комплекс Гольджи, его строение и функции. Лизосомы. Их строение и функции. Типы лизосом.
  • 19. Эпс, ее разновидности, роль в процессах синтеза веществ.
  • 20. Немембранные органеллы. Рибосомы, их структура и функции. Полисомы.
  • 21. Цитоскелет клетки, его строение и функции. Микроворсинки, реснички, жгутики.
  • 22. Ядро. Его значение в жизнедеятельности клетки. Основные компоненты и их структурно функциональная характеристика. Эухроматин и гетерохроматин.
  • 23. Ядрышко, его строение и функции. Ядрышковый организатор.
  • 24. Что такое пластиды? Какова их роль в клетке? Классификация пластид.
  • 25. Что такое включения? Какова их роль в клетке? Классификация включений.
  • 26. Происхождение эук. Клетки. Эндосимбиотическая теория происхождения ряда органоидов клетки.
  • 27. Строение и функции хромосом.
  • 28. Принципы классификации хромосом. Денверская и Парижская классификации хромосом, их сущность.
  • 29. Цитологические методы исследования. Световая и электронная микроскопия. Постоянные и временные препараты биологических объектов.
  • 25. Что такое включения? Какова их роль в клетке? Классификация включений.

    Включения цитоплазмы - это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности и характера обмена веществ в клетке и от условий существования организма. Включения имеют вид зерен, глыбок, капель, вакуолей, гранул различной величины и формы. Их химическая природа очень разнообразна. В зависимости от функционального назначения включения объединяют в группы:

      трофические;

    • пигменты;

      экскреты и др.

      специальные включения (гемоглобин)

    Среди трофических включений (запасных питательных веществ) важную роль играют жиры и углеводы. Белки как трофические включения используются лишь в редких случаях (в яйцеклетках в виде желточных зерен).

    Пигментные включения придают клеткам и тканям определенную окраску.

    Секреты и инкреты накапливаются в железистых клетках, так как являются специфическими продуктами их функциональной активности.

    Экскреты - конечные продукты жизнедеятельности клетки, подлежащие удалению из нее.

    26. Происхождение эук. Клетки. Эндосимбиотическая теория происхождения ряда органоидов клетки.

    Наиболее популярна в настоящее время симбиотическая гипотеза происхождения эукариотических клеток, согласно которой основой, или клеткой-хозяином, в эволюции клетки эукариотического типа послужил анаэробный прокариот, способный лишь к амебоидному движению. Переход к аэробному дыханию связан с наличием в клетке митохондрии, которые произошли путем изменений симбионтов - аэробных бактерий, проникших в клетку-хозяина и сосуществовавших с ней.

    Согласно инвагинационной гипотезе , предковой формой эукариотической клетки был аэробный прокариот (рис. 1.4). Внутри такой клетки-хозяина находилось одновременно несколько геномов, первоначально прикреплявшихся к клеточной оболочке. Органеллы, имеющие ДНК, а также ядро, возникли путем впячивания и отшнуровывания участков оболочки с последующей функциональной специализацией в ядро, митохондрий, хлоропласты. В процессе дальнейшей эволюции произошло усложнение ядерного генома, появилась система цитоплазматических мембран.

    27. Строение и функции хромосом.

    Хромосомы - это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.Средние длины метафазных хромосом человека лежат в пределах 1,5-10 микрон. Химической основой строения хромосом являются нуклеопротеиды - комплексы нуклеиновых кислот (см.) с основными белками - гистонами и протаминами.

    Хромосомы выполняют функцию основного генетического аппарата клетки. В них в линейном порядке расположены гены, каждый из которых занимает строго определенное место, называемое локусом. Альтернативные формы гена (т. е. различные его состояния), занимающие один и тот же локус, называются аллелями (от греч. allelon - взаимно другой, иной). Любая хромосома содержит только единственный аллель в данном локусе, несмотря на то, что в популяции могут существовать два, три и более аллелей одного гена.

    Помимо мембранных и немембранных органелл в клетках могут быть клеточные включения, представляющие собой непостоянные образования, то возникающие, то исчезающие в процессе жизнедеятельности клетки. Основное место локализации включений - цитоплазма, но иногда они встречаются и в ядре.

    По характеру все включения - это продукты клеточного метаболизма. Они накапливаются главным образом в форме гранул, капель и кристаллов. Химический состав включений очень разнообразен.

    Липоиды обычно откладываются в клетке в виде мелких капель. Большое количество жировых капель встречается в цитоплазме ряда простейших, например инфузорий. У млекопитающих жировые капли находятся в специализированных жировых клетках, в соединительной ткани. Часто значительное количество жировых включений откладывается в результате патологических процессов, например при жировом перерождении печени. Капли жира встречаются в клетках практически всех растительных тканей, очень много жира содержится в семенах некоторых растений.

    Включения полисахаридов имеют чаще всего формулу гранул разнообразных размеров. У многоклеточных животных и простейших в цитоплазме клеток встречаются отложения гликогена . Гранулы гликогена хорошо видны в световом микроскопе. Особенно велики скопления гликогена в цитоплазме поперечнополосатых мышечных волокон и в клетках печени, в нейронах. В клетках растений из полисахаридов наиболее часто откладывается крахмал. Он имеет вид гранул различной формы и размеров, причем форма крахмальных гранул специфична для каждого вида растений и для определенных тканей. Отложениями крахмала богата цитоплазма клубней картофеля, зерен злаков; каждая крахмальная гранула состоит их отдельных слоев, а каждый слой, в свою очередь, включает радиально расположенные кристаллы, почти невидимые в световой микроскоп.

    Белковые включения встречаются реже, чем жировые и углеводные. Белковыми гранулами богата цитоплазма яйцеклеток, где они имеют форму пластинок, шариков, дисков, палочек. Белковые включения встречаются в цитоплазме клеток печени, клеток простейших и многих других животных.

    К клеточным включениям относятся некоторые пигменты, например распространенный в тканях желтый и коричневый пигмент липофусцин , круглые гранулы которого накапливаются в процессе жизнедеятельности клеток, особенно по мере их старения. Сюда же относятся пигменты желтого и красного цвета - липохромы . Они накапливаются в виде мелких капель в клетках коркового вещества надпочечников и в некоторых клетках яичников. Пигмент ретинин входит в состав зрительного пурпура сетчатки глаза. Присутствие некоторых пигментов связано с выполнением этими клетками особых функций. Примерами могут служить красный дыхательный пигмент гемоглобин в эритроцитах крови или пигмент меланин в клетках меланофорах покровных тканей животных.

    Это непостоянные структурные компоненты клетки. Они возникают и исчезают в зависимости от функционального и метаболического состояния клетки, являются продуктами её жизнедеятельности и отражают функциональное состояние клетки в момент исследования. Включения подразделяют на несколько групп: трофические, секреторные, экскреторные, пигментные и др.

    Классификация включений

    Трофические включения

    – запас питательных веществ клетки. Различают углеводные, жировые и белковые включения. Например, глыбки гликогена и капли жира в клетках печени – запас углеводов и липидов, который образуется в организме после еды и исчезает при голодании. Желточные включения (липопротеидные гранулы) в яйцеклетке – запас питательных веществ, необходимый для развития зародыша в первые дни его возникновения.

    Секреторные включения

    гранулы и капли веществ, синтезированных в клетке для нужд организма (например, пищеварительные ферменты для желудочного и кишечного сока), которые накапливаются в вакуолях комплекса Гольджи апикальной части клетки и выводятся из клетки путём экзоцитоза.

    Экскреторные включения

    – гранулы и капли веществ, вредных для организма, которые выводятся клетками во внешнюю среду с мочой и калом. Например, экскреторные включения в клетках канальцев почек.

    Пигментные включения

    гранулы или капли веществ, придающих клетке цвет. Например, глыбки белка меланина, имеющего коричневый цвет в меланоцитах кожи, или гемоглобин в эритроцитах.

    Помимо структур цитоплазмы, которые можно четко отнести к органеллам или включениям, в ней постоянно имеется огромное количество разнообразных транспортных пузырьков, обеспечивающих перенос веществ между различными компонентами клетки.

    Гиалоплазма истинный раствор биополимеров заполняющий клетку, в котором во взвешенном состоянии (как в суспензии) находятся органеллы и включения, а также ядро клетки. К биополимерам гиалоплазмы относятся белки, жиры, углеводы, нуклеиновые кислоты, а также их сложные комплексы, которые растворены в воде, богатой минеральными солями и простыми органическими соединениями. Кроме того, в гиалоплазме находится цитоматрикс – сеть белковых волокон толщиной 2-3 нм. Через гиалоплазму различные структурные компоненты клетки взаимодействуют между собой, происходит обмен веществ и энергии. Гиалоплазма может переходить из жидкого (золь) в желеобразное (гель) состояние. При этом снижается скорость движения в гиалоплазме потоков веществ и энергии, движение органоидов, включений и ядра, а значит угнетается и функциональная активность клетки.

    Реакция клеток на внешнее воздействие.

    Описанная морфология клеток не является стабильной (постоянной). При воздействии на организм различных неблагоприятных факторов в строении различных структур проявляются различные изменения. В зависимости от факторов воздействия изменения клеточных структур проявляются неодинаково в клетках разных органов и тканей. При этом изменения клеточных структур могут быть адаптивными (приспособительными) и обратимыми, или жедезадаптивными , необратимыми (патологическими). Однако определить четкую грань между адаптивными и дезадаптивными изменениями не всегда возможно, так как приспособительные изменения могут перейти в патологические. Поскольку объектом изучения гистологии являются клетки, ткани и органы здорового организма человека, то здесь будут рассмотрены прежде всего адаптивные изменения клеточных структур. Изменения отмечаются как в строении ядра, так и цитоплазмы.

    Изменения в ядре - набухание ядра и сдвиг его на периферию клетки, расширение перинуклеарного пространства, образование инвагинаций кариолеммы (впячивание внутрь ядра его оболочки), конденсация хроматина. Кпатологическим изменениям ядра относят:

      пикноз - сморщивание ядра и коагуляция (уплотнение) хроматина;

      кариорексис - распад ядра на фрагменты;

      кариолизис - растворение ядра.

    Изменения в цитоплазме - уплотнение, а затем набухание митохондрий, дегрануляция зернистой эндоплазматической сети (слущивание рибосом), а затем и фрагментация канальцев на отдельные вакуоли, расширение цистерн, а затем распад на вакуоли пластинчатого комплекса Гольджи, набухание лизосом и активация их гидролаз, увеличение числа аутофагосом, в процессе митоза - распад веретена деления и развитие патологических митозов.

    Изменения цитоплазмы могут быть обусловлены структурными изменениями плазмолеммы, что приводит к усилению ее проницаемости и гидратации гиалоплазмы, нарушением обмена веществ, что сопровождается снижением содержания АТФ, снижением расщепления или увеличением синтеза включений (гликогена, липидов) и их избыточном накоплении.

    После устранения неблагоприятных воздействий на организм реактивные (адаптивные) изменения структур исчезают и морфология клетки восстанавливается. При развитиипатологических (дезадаптивных) изменений даже после устранения неблагоприятных воздействий структурные изменения нарастают и клетка погибает.

    Регенерация.

    Регенера́ция (восстановление) - способность живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы.

    Виды смерти клеток.

    Различают два вида клеточной гибели: насильственная смерть от повреждения – некроз и запрограммированная клеточная смерть – апоптоз .

    Некроз

    – это посмертные изменения клетки необратимого характера, заключающиеся в постепенном ферментативном разрушении и денатурации ее белков . Он развивается при чрезмерной альтерации клетки, не требует затрат энергии и не зависит от управляющих сигналов местного и центрального происхождения («анархических путь гибели»). Вследствие синтеза поврежденной клеткой БАВ (простогландины) и нарушения целостности ее мембран (выход различных ферментов), некроз представляет определенную угрозу окружающим структурам – это часто способствует развитию воспалительного процесса.

    Насильственная гибель клетки обусловлена:

      лишением ее питания и кислорода;

      необратимыми изменениями структуры и функции с угнетением важнейших метаболических процессов различными патогенными агентами.

    Некрозу предшествует глубокая, частично необратимая стадия повреждения клетки – некробиоз (рис. 1). Несмотря на многообразие этиологических факторов, провоцирующих в конечном счете развитие некробиоза и некроза, молекулярно-клеточные изменения, выявляемые при гибели клетки в большинстве случаев одинаковы (Зайчик А.Ш., Чурилов Л.П., 1999). Согласно их мнению, важно различать гипоксический и свободно-радикальный некробиоз . Механизмы свободно-радикального повреждения клетки (см. выше) могут запускаться без первичной гипоксии, а иногда даже в условиях его избытка. Гипоксический некробиоз (см. раздел «Гипоксия») инициируется различными патогенными факторами, вызывающих продолжительную гипоксию. Оба вида некробиоза могут комбинироваться и взаимно дополнять друг друга. Исходом обоих видов некробиоза являются такие повреждения клетки, при которых она уже неспособна к самостоятельному энергообеспечению (т. необратимости , рис. 1) и подвергается некрозу.

    Некоторые исследователи иногда рассматривают некробиоз, как процесс собственной гибели клетки. По Давыдовскому И.В., некробиоз – это процесс отмирания клеток. Некроз же, в большей степени характеристика морфологическая, наблюдающаяся после гибели клетки, а не механизм самой гибели.

    Различают две основные разновидности некроза:

      коагуляционный (сухой) некроз. При нем в клетке развивается значительный ацидоз, идет коагуляция белков и отмечается повышенное накопление кальция с агрегацией элементов цитоскелета. Очень часто наблюдается при тяжелой гипоксии, например, в кардиомиоцитах при инфаркте миокарда. Данный некроз преимущественно развивается в тканях богатых белком и кальцием и характеризуется ранними и глубокими поражениями митохондрий;

      колликвационный некроз. Для него типично преобладание гидролитических процессов лизосомального аутолиза или гетеролизиса при участии фагоцитов. Очаг некроза размягчен, наблюдается накопление активных гидроксильных радикалов и эндогенное омыление клеток, что приводит к разрушению ее структур, например различных мембран.

    Между коагуляционным и колликвационным некрозоми четких границ нет. Возможно, это объясняется тем, что механизмы их развития во многом общие. Ряд исследователей выделяют и так называемый казеозный (творожистый) некроз (при туберкулезе), пологая при этом, что он представляет собой комбинацию двух предыдущих типов.

    Апоптоз.

    Апоптоз – это программированная клеточная смерть (инициирующаяся под действием вне- или внутриклеточных факторов) в развитии которой активную роль принимают специальные и генетически запрограммированные внутриклеточные механизмы . Он, в отличие от некроза активный процесс, требующий определенных энергозатрат . Первоначально пытались разграничить понятия «программированная клеточная гибель » и «апоптоз »: к первому термину относили устранение клеток в эмбриогенезе, а ко второму – программированную смерть только зрелых дифференцированных клеток. В настоящее время выяснилось, что никакой целесообразности в этом нет (механизмы развития клеточной гибели одинаковы) и два понятия превратились в синонимы, хотя это объединение и не бесспорно.

    Прежде чем приступить к изложению материала о роли апоптоза для жизнедеятельности клетки (и организма) в норме и патологии, мы рассмотрим механизм апоптоза. Их реализацию можно представить в виде поэтапного развития следующих стадий:

    1 стадия стадия инициации (индукции) .

    В зависимости от происхождения сигнала, стимулирующего апоптоз, различают:

      внутриклеточные стимулы апоптоза . Среди них к наиболее известным относят – разные виды облучения, избыток Н + , оксид азота, свободные радикалы кислорода и липидов, гипертермия и др. Все они могут вызывать различные повреждения хромосом (разрывы ДНК, нарушения ее конформации др.) и внутриклеточных мембран (особенно митохондрий). То есть в данном случае поводом для апоптоза служит «неудовлетворительное состояние самой клетки» (Мушкамбиров Н.П., Кузнецов С.Л., 2003). Причем, повреждение структур клеток должно быть достаточно сильным, но не разрушительным. У клетки должны сохраниться энергетические и материальные ресурсы для активации генов апоптоза и его эффекторных механизмов. Внутриклеточный путь стимуляции программированной смерти клетки можно обозначить как «апоптоз изнутри »;

      трансмембранные стимулы апоптоза , т.е., в этом случае он активируется внешней «сигнализацией», которая передается через мембранные или (реже) внутриклеточные рецепторы. Клетка может быть вполне жизнеспособной, но, с позиции целостного организма или «ошибочной» стимуляции апоптоза, она должна погибнуть. Этот вариант апоптоза получил название «апоптоз по команде ».

    Трансмембранные стимулы подразделяются на:

      «отрицательные » сигналы. Для нормальной жизнедеятельности клетки, регуляции ее деления и размножения необходимо воздействие на нее через рецепторы различных БАВ: факторов роста, цитокинов, гормонов. Среди прочих эффектов, они подавляют механизмы клеточной гибели. И естественно, дефицит или отсутствие данных БАВ активирует механизмы программированной смерти клетки;

      «положительные » сигналы. Сигнальные молекулы, такие как ФНОα, глюкокортикоиды, некоторые антигены, адгезивные белки и др., после взаимодействия с клеточными рецепторами могут запускать программу апоптоза.

    На клеточных мембранах находится группа рецепторов, в задачу которых передача сигнала к развитию апоптоза является основной, возможно даже единственной функцией. Это, например, белки группы DR (death receptos – «рецепторы смерти »): DR 3 , DR 4 , DR 5 . Наиболее хорошо изучен Fas-рецептор, появляющийся на поверхности клеток (гепатоцитах) спонтанно или под влиянием активации (зрелые лимфоциты). Fas-рецептор при взаимодействии с Fas-рецептором (лигандом) Т-киллера запускает программу смерти клетки мишени. Однако, взаимодействие Fas-рецептора с Fas-лигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера (см. нижеигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера ()ожно000000000000000000000000000).

    Следует помнить, что некоторые сигнальные молекулы апоптоза, в зависимости от ситуации могут наоборот, блокировать развитие программированной смерти клеток. Амбивалентность (двойственное проявление противоположных качеств) характерна для ФНО, ИЛ-2, интерферона γ и др.

    На мембранах эритроцитов, тромбоцитов, лейкоцитов, а так же клеток легкого и кожи обнаружены особые антигены-маркеры . На них синтезируются физиологические аутоантитела , и они, выполняя роль опсонинов , способствуют фагоцитозу этих клеток, т.е. гибель клеток происходит путемаутофагоцитоза . Выяснилось, что антигены-маркеры появляются на поверхности «старых» (прошедших свой путь онтогенетического развития) и поврежденных клетках, молодые и неповрежденные клетки их не имеют. Данные антигены получили название «антигены-маркеры стареющих и поврежденных клеток» или «белок третьей полосы». Появление белка третьей полосы контролируется геномом клетки. Следовательно, аутофагоцитоз можно рассматривать, как вариант запрограммированной гибели клеток .

      Смешанные сигналы. Это сочетанное воздействие сигналов первой и второй группы. Например, апоптоз происходит с лимфоцитами, активированных митогоном (положительный сигнал), но не вступивших в контакт с АГ (отрицательный сигнал).

    2 стадия стадия программирования (контроля и интеграции механизмов апоптоза).

    Для этой стадии характерно два, диаметрально противоположных процесса, наблюдающихся после инициации. Происходит либо:

      реализация пускового сигнала к апоптозу через активацию его программы (эффекторами являются каспазы и эндонуклеазы);

      блокируется эффект пускового сигнала апоптоза.

    Различают два основных, но не исключающих друг друга, варианта исполнения стадии программирования (рис. 14):

    Рис. 14. Каспазный каскад и его мишени

    R– мембранный рецептор; К – каспазы;AIF– митохондриальная протеаза; Цит. С – цитохром с;Apaf-1 – цитоплазматический белок;IAPs– ингибиторы каспаз

    1. Прямая передача сигнала (прямой путь активации эффекторных механизмов апоптоза минуя геном клетки) реализуется через:

      адапторные белки. Например, так осуществляется запуск апоптоза Т-киллером. Он активирует каспазу-8 (адапторный белок). Аналогично может действовать и ФНО;

      цитохром С и протеазу ΑIF (митохондриальная протеаза). Они выходят из поврежденной митохондрии и активируют каспазу-9;

      гранзимы. Т-киллеры синтезируют белок перфорин, который образует каналы в плазмолемме клетки-мишени. Через эти каналы в клетку проникают протеолитические ферменты гранзимы , выделяемые все тем же Т-киллером и они запускают каскад каспазной сети.

    2. Опосредованная передача сигнала. Она реализуется с помощью генома клетки путем:

      репрессии генов, контролирующих синтез белков-ингибиторов апоптоза (гены Bcl-2, Bcl-XL и др). Белки Bcl-2 в нормальных клетках входят в состав мембраны митохондрий и закрывают каналы по которым из этих органоидов выходят цитохром С и протеаза AIF;

      экспрессии, активации генов, контролирующих синтез белков-активаторов апоптоза (гены Bax, Bad, Bak, Rb, P 53 и др.). Они, в свою очередь активируют каспазы (к-8, к-9).

    На рис. 14 представлена примерная схема каспазного принципа активации каспаз. Видно, что откуда бы не запускался каскад, его узловым моментом является каспаза 3. Она активируется и каспазой 8 и 9. Всего в семействе каспаз – более 10 ферментов. Локализуются в цитоплазме клетки в неактивном состоянии (прокаспазы). Положение всех каспаз в данном каскаде до конца не выяснено, поэтому на схеме ряд из них отсутствует. Как только активируются каспазы 3,7,6 (возможно и их другие типы) наступает 3 стадия апоптоза.

    3 стадия стадия реализация программы (исполнительная, эффекторная).

    Непосредственными исполнителями («палачами» клетки) являются выше указанные каспазы и эндонуклеазы. Местом приложения их действия (протеолиза) служат (рис. 14):

      цитоплазматические белки – белки цитоскелета (фодрин и актин). Гидролизом фодрина объясняют изменение поверхности клетки – «гофрирование» плазмолеммы (появление на ней впячиваний и выступов);

      белки некоторых цитоплазматических регуляторных ферментов: фосфолипазы А 2 , протеинкиназы С и др.;

      ядерные белки. Протеолиз ядерных белков занимает основное место в развитии апоптоза. Разрушаются структурные белки, белки ферментов репликации и репарации (ДНК-протеинкиназы и др.), регуляторные белки (рRb и др.), белки-ингибиторов эндонуклеаз.

    Иннактивация последней группы – белков ингибиторов эндонуклеаз приводит к активации эндонуклеаз, второму « орудию » апоптоза . В настоящее время эндонуклеазы и в частности, Са 2+ , Мg 2+ -зависимая эндонуклеаза , рассматривается как центральный фермент программируемой смерти клетки. Она расщепляет ДНК не в случайных местах, а только в линкерных участках (соединительные участки между нуклеосомами). Поэтому хроматин не лизируется, а только фрагментируется, что определяет отличительную, структурную черту апоптоза.

    Вследствие разрушения белка и хроматина в клетке формируются и от нее отпочковываются различные фрагменты – апоптозные тельца. В них находятся остатки цитоплазмы, органелл, хроматина и др.

    4 стадия стадия удаления апоптозных телец (фрагментов клетки).

    На поверхности апоптозных телец экспрессируются лиганды, они распознаются рецепторами фагоцитов. Процесс обнаружения, поглощения и метаболизирования фрагментов погибшей клетки происходит сравнительно быстро. Это способствует избежать попадания содержания погибшей клетки в окружающую среду и тем самым, как отмечено выше, воспалительный процесс не развивается. Клетка уходит из жизни «спокойно», не беспокоя «соседей» («тихий суицид»).

    Программированная клеточная гибель имеет важное значение для многих физиологических процессов . С апоптозом связаны:

      поддержание нормальных процессов морфогенеза – запрограммированная смерть клеток в процессе эмбриогенеза (имплантации, органогенеза) и метаморфоза;

      поддержание клеточного гомеостаза (в том числе ликвидация клеток с генетическими нарушениями и инфицированных вирусами). Апоптозом объясняется физиологическая инволюция и уравновешивание митозов в зрелых тканях и органах. Например, гибель клеток в активно пролиферирующих и самообновляющихся популяциях – эпителиоцитов кишечника, зрелых лейкоцитов, эритроцитов. Гормонально-зависимая инволюция – гибель эндометрия в конце менструального цикла;

      селекция разновидностей клеток внутри популяции. Например, формирование антигенспецифической составляющей иммунной системы и управление реализацией ее эффекторных механизмов. С помощью апоптоза происходит выбраковка ненужных и опасных для организма клонов лимфоцитов (аутоагрессивных). Сравнительно недавно (Griffith T.S., 1997) показали значение программированной гибели клеток в защите «иммунологически привилегированных» зон (внутренние среды глаза и семенников). При прохождении гисто-гематических барьеров данных зон (что случается редко), эффекторные Т-лимфоциты гибнут (см. выше). Включение механизмов их смерти обеспечивается при взаимодействии Fas-лиганда барьерных клеток с Fas-рецепторами Т-лимфоцита, тем самым предотвращается развитие аутоагрессии.

    Роль апоптоза в патологии и виды различных заболеваний связанных с нарушением апоптоза представлены в виде схемы (рис. 15) и таблицы 1.

    Конечно, значение апоптоза в патологии меньше чем некроза (возможно, это связано с недостаточностью таких знаний). Однако, проблема его в патологии имеет и несколько иной характер: она оценивается по степени выраженности апоптоза — усиление или ослабление при тех или иных болезнях.

    Клеточные включения – это структурированные на ультрамикроскопические уровне скопления веществ в клетке, которые возникают как продукты метаболизма. Нередко включениями называют структуры, присутствующие в клетке временно (непостоянные). Это неточно. Гемоглобин, например, присутствует в эритроцитах постоянно, так же постоянны гранулы меланина в пигментных клетках. В качестве включений рассматривают и остаточные тельца, возникающие после активных процессов фагоцитоза и аутофагии которые хранятся в клетке до ее смерти. Совсем резкую границу между органеллами и включениями провести невозможно.

    Включение локализуются преимущественно в цитоплазме, хотя иногда встречаются и в ядре. Все включения – это продукты метаболизма клеток, которые накапливаются в форме гранул, капель, вакуолей, иногда кристаллов. Включения могут активно использоваться клеткой, но это осуществляется благодаря ферментным системам, которые есть в гиалоплазма и органеллах. Непосредственно включениям ферментативная активность не характерна.

    Как классифицируют включения?

    Традиционно их классифицируют на трофические, секреторные, экскреторные и пигментные.

    Что входит в состав трофических включений и каково их значение?

    Из трех основных питательных веществ (углеводов, белков и жиров) только углеводы и жиры депонируются в клетках как включения.

    Углеводы депонируются главным образом в клетках печени и в меньшей
    степени – в мышечных и других клетках. Во всех случаях они депонируются в гиалоплазме свободно в виде гранул гликогена. Последние имеют диаметр 20-30нм (бета-частицы), которые вместе собраны в розетки (альфа-частицы). Гранулы гликогена располагаются вблизи агранулярной ЭПС и используются в качестве энергии.

    Жиры депонируются в основном в клетках, известных под названием жировых. Эти клетки образуют специальную жировую ткань. Жировые включения имеют вид капель, которые располагаются отдельно или сливаются друг с другом. На гистологических препаратах, окрашенных обзорным методом (гематоксилин - эозином) они имеют вид светлых ("пустых") вакуолей, так как при этом методе обработки липиды растворяются. Липидные капли служат источником веществ, которые используются в качестве энергетических субстратов, а также в некоторых клетках (клетки надпочечников) могут содержать субстраты для последующего синтеза (например, стереоидних гормонов).



    Какие клетки содержат секреторные включения?

    Секреторные включения содержат клетки, продуцирующие тот или иной секрет для организма. К ним относится огромное количество экзокриноцитов организма, например: главные клетки стенки желудка, выделяющие (секретирующие) в полость желудка фермент пепсин, слизистые клетки слюнных желез, клетки потовых и сальных желез кожи. Секреторные включения содержат и различные эндокриноциты, например: клетки мозгового вещества надпочечников, продуцирующих гормон адреналин, клетки щитовидной железы, продуцирующие гормон тироксин. Секреторные гранулы имеют обычно вид мембранных пузырьков, содержащих продукт секреции.

    Какие виды пигментных включений имеются в организме человека и каково их значение?

    Для врача важное значение имеют знания о нормальной окраске различных частей организма человека, а также обусловленность той или иной окраски. В клинической диагностике многих болезней важным, а иногда и главным критерием служит изменение окраски той или иной части организма. Для паталогоанатома окраска имеет еще большее значение, чем для клинициста. Так, при описании общего вида поврежденных органов при операциях или на разрезах значительное место отводится именно описанию изменений в их окраске.

    Естественные окраски ткани зависят главным образом от типа и количества пигмента, который в ней содержится. При некоторых заболеваниях определенные пигменты, которые в норме содержатся только в клетках, могут появляться и в межклеточных пространствах.

    Пигменты делят на 2 группы: экзогенные и эндогенные.

    Экзогенные – это те, которые образуются вне организма. К ним относятся липохромы (от греч. липосом – жир, хрома – цвет), которые растворяются в жирах и поэтому их окрашивают. Наиболее известным является каротин-пигмент, который окрашивает морковь в ярко-оранжевый цвет. Некоторые формы каротина являются провитамином, которые в организме человека превращаются в витамин. При избыточном употреблении каротина (каротинемия – избыток каротина в крови) люди на первый взгляд напоминают больных желтухой. У взрослых этого почти не бывает, а у младенцев, которым дают много соков, может наблюдаться.

    Эндогенные

    Наиболее важным можно считать гемоглобин – железосодержащий пигмент эритроцитов, который служит в организме переносчиком кислорода. Длительность существования эритроцитов в крови не превышает 4 мес. По мере износа они фагоцитируются макрофагами в селезенке, печени и костном мозге. В цитоплазме этих крупных клеток гемоглобин расщепляется на гемосидерин (золотисто-коричневого цвета) (содержит железо) и билирубин (без содержания железа). Билирубин – это желто-коричневый пигмент обуславливающий окраску желчи-жидкости, вырабатывается печенью, накапливается и концентрируется в желчном пузыре, затем поступает в кишку, где играет важную роль в процессах переваривания жиров и их всасывании. После окисления билирубин превращается в зеленый пигмент-биливердин, которого много содержится в желчи некоторых птиц.

    4.6 Историческая справка . Первый весомый факт, который указывал на происхождение билирубина от гемоглобина, был получен знаменитым патологоанатомом Вирховым более 100 лет назад. Он обратил внимание на кристаллы желтого цвета в тех тканях, где наблюдались кровоизлияния. Этот пигмент, который кристаллизуется среди старых эритроцитов, Вирхов назвал гематоидином и пришел к выводу о его происхождении от гемоглобина. Химический анализ показал, что это тот же пигмент, который окрашивает желчь (билирубин). Но еще десятки лет происхождения билирубина от гемоглобина не принималось.

    Меланин – это коричнево-черный пигмент, который встречается главным образом в коже и ее производных, а также в глазу. Он содержится в substantia nigra головного мозга. У представителей белой расы меланин появляется в коже после пребывания на солнце. Меланин обусловливает темный цвет кожи у представителей черной расы. Карий цвет глаз также зависит от наличия меланина. В глубоких слоях сетчатки меланин является материалом, который не пропускает свет, играя такую же роль, как и черная бумага или краска в фотографии.

    Меланин – азотсодержащие вещества, которые в чистом виде не содержат ни серы, ни железа. Клетки, продуцирующие меланин, называются меланоциты. У них есть фермент, под действием которого бесцветный предшественник, который доставляется кровью или тканевой жидкостью, превращается в меланин.

    Липофусцин – это пигмент, содержащий липид и поэтому окрашивается красителями на жир. Цвет самого липофусцина золотисто-коричневый, он образует скопления, называемые гранулами. Этот пигмент часто оказывается в сердечной мышце, в нейронах и клетках печени. Он накапливается в больших количествах в остаточных тельцах при старении и износе клеток, поэтому его называют пигментом старения.