Строение клеток прокариот и эукариот. Прокариоты: строение и особенности жизнедеятельности Есть ли пластиды у прокариотов

К прокариотам относят бактерии и сине-зелёные водоросли (цианеи). Наследственный аппарат прокариот представлен одной кольцевой молекулой ДНК, не образующей связей с белками и содержащей по одной копии каждого гена - гаплоидные организмы. В цитоплазме имеется большое количество мелких рибосом; отсутствуют или слабо выражены внутренние мембраны. Ферменты пластического обмена расположены диффузно. Аппарат Гольджи представлен отдельными пузырьками. Ферментные системы энергетического обмена упорядоченно расположены на внутренней поверхности наружной цитоплазматической мембраны. Снаружи клетка окружена толстой клеточной стенкой. Многие прокариоты способны к спорообразованию в неблагоприятных условиях существования; при этом выделяется небольшой участок цитоплазмы содержащий ДНК, и окружается толстой многослойной капсулой. Процессы метаболизма внутри споры практически прекращаются. Попадая в благоприятные условия, спора преобразуется в активную клеточную форму. Размножение прокариот происходит простым делением надвое.

Прокариотические и эукариотические клетки (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000)

Признаки Прокариоты Эукариоты
1 ЯДЕРНАЯ МЕМБРАНА Отсутствует Имеется
ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА Имеется Имеется
МИТОХОНДРИИ Отсутствуют Имеются
ЭПС Отсутствует Имеется
РИБОСОМЫ Имеются Имеются
ВАКУОЛИ Отсутствуют Имеются (особенно характерны для растений)
ЛИЗОСОМЫ Отсутствуют Имеются
КЛЕТОЧНАЯ СТЕНКА Имеется, состоит из сложного гетерополимерного вещества Отсутствует в животных клетках, в растительных состоит из целлюлозы
КАПСУЛА Если имеется, то состоит из соединений белка и сахара Отсутствует
КОМПЛЕКС ГОЛЬДЖИ Отсутствует Имеется
ДЕЛЕНИЕ Простое Митоз, амитоз, мейоз

Другие записи

10.06.2016. Химическая организация клетки. Неорганические вещества

Изучение химического состава клеток показывает, что в живых организмах нет никаких особых химических элементов, свойственных только им: именно в этом проявляется единство химического состава живой и…

10.06.2016. Строение эукариотической клетки

Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена…

По строению клетки живые организмы делят на прокариот и эукариот . Клетки и тех и других окружены плазматической мембраной , снаружи от которой во многих случаях имеется клеточная стенка . Внутри клетки находится полужидкая цитоплазма . Однако клетки прокариот устроены значительно проще, чем клетки эукариот.

Основной генетический материал прокариот (от греч. про – до и карион – ядро) находится в цитоплазме в виде кольцевой молекулы ДНК. Эта молекула (нуклеоид ) не окружена ядерной оболочкой, характерной для эукариот, и прикрепляется к плазматической мембране (рис.1). Таким образом, прокариоты не имеют оформленного ядра. Кроме нуклеоида в прокариотической клетке часто встречается небольшая кольцевая молекула ДНК, называемая плазмидой . Плазмиды могут перемещаться из одной клетки в другую и встраиваться в основную молекулу ДНК.

Некоторые прокариоты имеют выросты плазматической мембраны: мезосомы, ламеллярные тилакоиды, хроматофоры . В них сосредоточены ферменты, участвующие в фотосинтезе и в процессах дыхания. Кроме того, мезосомы ассоциированы с синтезом ДНК и секрецией белка.

Клетки прокариот имеют небольшие размеры, их диаметр составляет 0,3–5 мкм. С наружной стороны плазматической мембраны всех прокариот (за исключением микоплазм) находится клеточная стенка . Она состоит из комплексов белков и олигосахаридов, уложенных слоями, защищает клетку и поддерживает ее форму. От плазматической мембраны она отделена небольшим межмембранным пространством.

В цитоплазме прокариот обнаруживаются только немембранные органоиды рибосомы . По структуре рибосомы прокариот и эукариот сходны, однако рибосомы прокариот имеют меньшие размеры и не прикрепляются к мембране, а располагаются прямо в цитоплазме.

Многие прокариоты подвижны и могут плавать или скользить с помощью жгутиков.

Размножаются прокариоты обычно путем деления надвое (бинарным ). Делению предшествует очень короткая стадия удвоения, или репликации, хромосом. Так что прокариоты – гаплоидные организмы.

К прокариотам относятся бактерии и синезеленые водоросли, или цианобактерии. Прокариоты появились на Земле около 3,5 млрд лет назад и были, вероятно, первой клеточной формой жизни, дав начало современным прокариотам и эукариотам.

Эукариоты (от греч. эу – истинный, карион – ядро) в отличие от прокариот, имеют оформленное ядро, окруженное ядерной оболочкой – двуслойной мембраной. Молекулы ДНК, обнаруживаемые в ядре, незамкнуты (линейные молекулы). Кроме ядра часть генетической информации содержится в ДНК митохондрий и хлоропластов. Эукариоты появились на Земле примерно 1,5 млрд лет назад.

В отличие от прокариот, представленных одиночными организмами и колониальными формами, эукариоты могут быть одноклеточными (например, амеба), колониальными (вольвокс) и многоклеточными организмами. Их делят на три больших царства: Животные, Растения и Грибы.

Диаметр клеток эукариот составляет 5–80 мкм. Как и прокариотические клетки, клетки эукариот окружены плазматической мембраной , состоящей из белков и липидов. Эта мембрана работает как селективный барьер, проницаемый для одних соединений и непроницаемый для других. Снаружи от плазматической мембраны расположена прочная клеточная стенка , которая у растений состоит главным образом из волокон целлюлозы, а у грибов – из хитина. Основная функция клеточной стенки – обеспечение постоянной формы клеток. Поскольку плазматическая мембрана проницаема для воды, а клетки растений и грибов обычно соприкасаются с растворами меньшей ионной силы, чем ионная сила раствора внутри клетки, вода будет поступать внутрь клеток. За счет этого объем клеток будет увеличиваться, плазматическая мембрана начнет растягиваться и может разорваться. Клеточная стенка препятствует увеличению объема и разрушению клетки.

У животных клеточная стенка отсутствует, но наружный слой плазматической мембраны обогащен углеводными компонентами. Этот наружный слой плазматической мембраны клеток животных называют гликокаликсом . Клетки многоклеточных животных не нуждаются в прочной клеточной стенке, поскольку есть другие механизмы, обеспечивающие регуляцию клеточного объема. Так как клетки многоклеточных животных и одноклеточные организмы, живущие в море, находятся в среде, в которой суммарная концентрация ионов близка к внутриклеточной концентрации ионов, клетки не набухают и не лопаются. Одноклеточные животные, живущие в пресной воде (амеба, инфузория туфелька), имеют сократительные вакуоли, которые постоянно выводят наружу поступающую внутрь клетки воду.

Структурные компоненты эукариотической клетки

Внутри клетки под плазматической мембраной находятся цитоплазма . Основное вещество цитоплазмы (гиалоплазма) представляет собой концентрированный раствор неорганических и органических соединений, главными компонентами которого являются белки. Это коллоидная система, которая может переходить из жидкого в гелеобразное состояние и обратно. Значительная часть белков цитоплазмы является ферментами, осуществляющими различные химические реакции. В гиалоплазме располагаются органоиды, выполняющие в клетке различные функции. Органоиды могут быть мембранными (ядро, аппарат Гольджи, эндоплазматический ретикулум, лизосомы, митохондрии, хлоропласты) и немембранными (клеточный центр, рибосомы, цитоскелет).

Мембранные органоиды

сновным компонентом мембранных органоидов является мембрана . Биологические мембраны построены по общему принципу, но химический состав мембран разных органоидов различен. Все клеточные мембраны – это тонкие пленки (толщиной 7–10 нм), основу которых составляет двойной слой липидов (бислой), расположенных так, что заряженные гидрофильные части молекул соприкасаются со средой, а гидрофобные остатки жирных кислот каждого монослоя направлены внутрь мембраны и соприкасаются друг с другом (рис. 3). В бислой липидов встроены молекулы белков (интегральные белки мембраны) таким образом, что гидрофобные части молекулы белка соприкасаются с жирнокислотными остатками молекул липидов, а гидрофильные части экспонированы в окружающую среду. Кроме этого часть растворимых (немембранных белков) соединяется с мембраной в основном за счет ионных взаимодействий (периферические белки мембраны). Ко многим белкам и липидам в составе мембран присоединены также углеводные фрагменты. Таким образом, биологические мембраны – это липидные пленки, в которые встроены интегральные белки.

Одна из основных функций мембран – создание границы между клеткой и окружающей средой и различными отсеками клетки. Липидный бислой проницаем в основном для жирорастворимых соединений и газов, гидрофильные вещества переносятся через мембраны с помощью специальных механизмов: низкомолекулярные – с помощью разнообразных переносчиков (каналов, насосов и др.), а высокомолекулярные – с помощью процессов экзо- и эндоцитоза (рис. 4).

Рис. 4. Схема переноса веществ через мембрану

При эндоцитозе определенные вещества сорбируются на поверхности мембраны (за счет взаимодействия с белками мембраны). В этом месте образуется впячивание мембраны внутрь цитоплазмы. Затем от мембраны отделяется пузырек, внутри которого содержится переносимое соединение. Таким образом, эндоцитоз – это перенос в клетку высокомолекулярных соединений внешней среды, окруженных участком мембраны. Обратный процесс, то есть экзоцитоз – это перенос веществ из клетки наружу. Он происходит путем слияния с плазматической мембраной пузырька, заполненного транспортируемыми высокомолекулярными соединениями. Мембрана пузырька сливается с плазматической мембраной, а его содержимое изливается наружу.

Каналы, насосы и другие переносчики – это молекулы интегральных белков мембраны, обычно образующие в мембране пору.

Кроме функций разделения пространства и обеспечения избирательной проницаемости мембраны способны воспринимать сигналы. Эту функцию осуществляют белки-рецепторы, связывающие сигнальные молекулы. Отдельные белки мембраны являются ферментами, осуществляющими определенные химические реакции.

Ядро – крупный органоид клетки, окруженный ядерной оболочкой и имеющий обычно шаровидную форму. Ядро в клетке одно, и хотя встречаются многоядерные клетки (клетки скелетных мышц, некоторых грибов) или не имеющие ядра (эритроциты и тромбоциты млекопитающих), но эти клетки возникают из одноядерных клеток-предшественников.

Основная функция ядра – хранение, передача и реализация генетической информации . Здесь происходит удвоение молекул ДНК, в результате чего при делении дочерние клетки получают одинаковый генетический материал. В ядре с использованием в качестве матрицы отдельных участков молекул ДНК (генов) происходит синтез молекул РНК: информационных (иРНК), транспортных (тРНК) и рибосомальных (рРНК), необходимых для синтеза белка. В ядре осуществляется сборка субъединиц рибосом из молекул рРНК и белков, которые синтезируются в цитоплазме и переносятся в ядро.

Ядро состоит из ядерной оболочки, хроматина (хромосом), ядрышка и нуклеоплазмы (кариоплазмы).

Рис. 5. Структура хроматина: 1 – нуклеосома, 2 – ДНК

Под микроскопом внутри ядра видны зоны плотного вещества – хроматина. В неделящихся клетках он равномерно заполняет объем ядра или конденсируется в отдельных местах в виде более плотных участков и хорошо окрашивается основными красителями. Хроматин представляет собой комплекс ДНК и белков (рис. 5), большей частью положительно заряженных гистонов .

Количество молекул ДНК в ядре равно числу хромосом. Количество и форма хромосом являются уникальной характеристикой вида. В состав каждой из хромосом входит одна молекула ДНК, состоящая из двух связанных между собой нитей и имеющая вид двойной спирали толщиной 2 нм. Длина ее значительно превышает диаметр клетки: она может достигать нескольких сантиметров. Молекула ДНК заряжена отрицательно, поэтому сворачиваться (конденсироваться) она может только после связывания с положительно заряженными белками-гистонами (рис. 6).

Сначала двойная нить ДНК закручивается вокруг отдельных блоков гистонов, в каждый из которых входит 8 молекул белка, образуя структуру в виде «бусин на нитке» толщиной около 10 нм. Бусины называются нуклеосомами. В результате формирования нуклеосом длина молекулы ДНК уменьшается примерно в 7 раз. Далее нить с нуклеосомами сворачивается, формируя структуру в виде каната толщиной около 30 нм. Затем такой канат, изогнутый в виде петель, прикрепляется к белкам, образующим основу хромосомы. В результате образуется структура с толщиной около 300 нм. Дальнейшая конденсация этой структуры приводит к образованию хромосомы.

В период между делениями хромосома частично разворачивается. В результате этого отдельные участки молекулы ДНК, которые должны экспрессироваться в данной клетке, освобождаются от белков и вытягиваются, что делает возможным считывание с них информации путем синтеза молекул РНК.

Ядрышко – это тип матричной ДНК, отвечающей за синтез рРНК и собранной в отдельных участках ядра. Ядрышко – наиболее плотная структура ядра, оно не является отдельным органоидом, а представляет собой один из локусов хромосомы. В нем образуется рРНК, которая затем образует комплекс с белками, формируя субъединицы рибосом, которые уходят в цитоплазму.

Негистоновые белки ядра образуют внутри ядра структурную сеть. Она представлена слоем фибрилл, подстилающим ядерную оболочку. К ней прикрепляется внутриядерная сеть фибрилл, к которой присоединены фибриллы хроматина.

Ядерная оболочка состоит из двух мембран: внешней и внутренней, разделенных межмембранным пространством. Внешняя мембрана соприкасается с цитоплазмой, на ней могут находиться полирибосомы, а сама она может переходить в мембраны эндоплазматического ретикулума. Внутренняя мембрана связана с хроматином. Таким образом, ядерная оболочка обеспечивает фиксацию хромосомного материала в трехмерном пространстве ядра.

Оболочка ядра имеет круглые отверстия – ядерные поры (рис. 7). В области поры внешняя и внутренняя мембраны смыкаются и образуют отверстия, заполненные фибриллами и гранулами. Внутри поры располагается сложная система из белков, обеспечивающих избирательное связывание и перенос макромолекул. Количество ядерных пор зависит от интенсивности метаболизма клетки.

Эндоплазматический ретикулум , или эндоплазматическая сеть (ЭПР), представляет собой причудливую сеть каналов, вакуолей, уплощенных мешков, соединенных между собой и отделенных от гиалоплазмы мембраной (рис. 8).

Различают шероховатый и гладкий ЭПР. На мембранах шероховатого ЭПР находятся рибосомы (рис. 9), которые синтезируют белки, экскретируемые из клетки или встраивающиеся в плазматическую мембрану. Вновь синтезированный белок сходит с рибосомы и проходит через специальный канал внутрь полости эндоплазматического ретикулума, где он подвергается посттрансляционной модификации, например связыванию с углеводами, протеолитическому отщеплению части полипептидной цепи, образованию S–S-связей между остатками цистеина в цепи. Далее эти белки транспортируются в комплекс Гольджи, где входят либо в состав лизосом, либо секреторных гранул. В обоих случаях эти белки оказываются внутри мембранного пузырька (везикулы).

Рис. 9. Схема синтеза белка в шероховатом ЭПР: 1 – малая и
2 – большая субъединицы рибосомы; 3 – молекула рРНК;
4 – шероховатый ЭПР; 5 – вновь синтезируемый белок

Гладкий ЭПР лишен рибосом. Его основная функция – синтез липидов и метаболизм углеводов. Он хорошо развит, например, в клетках коркового вещества надпочечников, где содержатся ферменты, обеспечивающие синтез стероидных гормонов. В гладком ЭПР в клетках печени находятся ферменты, осуществляющие окисление (детоксикацию) чужеродных для организма гидрофобных соединений, например лекарств.

Рис. 10. Аппарат Гольджи: 1 – пузырьки; 2 – цистерны

Комплекс Гольджи (рис. 10) состоит из 5–10 плоских ограниченных мембраной полостей, расположенных параллельно. Концевые части этих дискообразных структур имеют расширения. Таких образований в клетке может быть несколько. В зоне комплекса Гольджи находится большое количество мембранных пузырьков. Часть из них отшнуровывается от концевых частей основной структуры в виде секреторных гранул и лизосом. Часть мелких пузырьков (везикул), переносящих синтезированные в шероховатом ЭПР белки, перемещается к комплексу Гольджи и сливается с ним. Таким образом комплекс Гольджи участвует в накоплении и дальнейшей модификации продуктов, синтезированных в шероховатом ЭПР, и их сортировке.

Рис. 11. Образование и функции лизосом: 1 – фагосома; 2 – пиноцитозный пузырек; 3 – первичная лизосома; 4 – аппарат Гольджи; 5 – вторичная лизосома

Лизосомы – это вакуоли (рис. 11), ограниченные одной мембраной, которые отпочковываются от комплекса Гольджи. Внутри лизосом достаточно кислая среда (рН 4,9–5,2). Там располагаются гидролитические ферменты, расщепляющие различные полимеры при кислых рН (протеазы, нуклеазы, глюкозидазы, фосфатазы, липазы). Эти первичные лизосомы сливаются с эндоцитозными вакуолями, содержащими компоненты, которые должны расщепляться. Вещества, попавшие во вторичную лизосому, расщепляются до мономеров и переносятся через мембрану лизосомы в гиалоплазму. Таким образом, лизосомы участвуют в процессах внутриклеточного переваривания.

Митохондрии окружены двумя мембранами: наружной, отделяющей митохондрию от гиалоплазмы, и внутренней, отграничивающей ее внутреннее содержимое. Между ними располагается межмембранное пространство шириной 10–20 нм. Внутренняя мембрана образует многочисленные выросты (кристы ). В этой мембране располагаются ферменты, обеспечивающие окисление образовавшихся за пределами митохондрий аминокислот, сахаров, глицерина и жирных кислот (цикл Кребса) и осуществляющие перенос электронов в дыхательной цепи (схема). За счет переноса электронов по дыхательной цепи с высокого на более низкий энергетический уровень часть освобождающейся свободной энергии запасается в виде АТФ – универсальной энергетической валюты клетки. Таким образом, основная функция митохондрий – это окисление различных субстратов и синтез молекул АТФ.

Схема переноса двух электронов по дыхательной цепи

Внутри митохондрии находится кольцевая молекула ДНК, которая кодирует часть белков митохондрии. Во внутреннем пространстве митохондрий (матриксе) находятся рибосомы, похожие на рибосомы прокариот, которые и обеспечивают синтез этих белков.

Тот факт, что митохондрии имеют свою кольцевую ДНК и прокариотические рибосомы, привел к возникновению гипотезы, согласно которой митохондрия является потомком древней прокариотической клетки, когда-то попавшей внутрь эукариотической и в процессе эволюции взявшей на себя отдельные функции.

Рис. 12. Хлоропласты (А) и тилакоидные мембраны (Б)

Пластиды – органоиды растительной клетки, которые содержат пигменты. В хлоропластах содержится хлорофилл и каротиноиды, в хромопластах – каротиноиды, в лейкопластах пигментов нет. Пластиды окружены двойной мембраной. Внутри них располагается система мембран, имеющая форму плоских пузырьков, называемых тилакоидами (рис. 12). Тилакоиды уложены в стопки, напоминающие стопки тарелок. Пигменты встроены в мембраны тилакоидов. Их основная функция – поглощение света, энергия которого с помощью ферментов, встроенных в мембрану тилакоида, преобразуется в градиент ионов Н + на мембране тилакоида. Как и митохондрии, пластиды имеют собственную кольцевую ДНК и рибосомы прокариотического типа. По-видимому, пластиды также являются прокариотическим организмом, живущим в симбиозе с клетками эукариот.

Рибосомы –это немембранные клеточные органоиды, встречающиеся как в клетках про-, так и эукариот. Рибосомы эукариот больше по размеру, чем прокариотические, их размер составляет 25х20х20 нм. Состоит рибосома из большой и малой субъединиц, прилегающих друг к другу. Между субъединицами в функционирующей рибосоме располагается нить иРНК.

Каждая субъединица рибосомы построена из рРНК, плотно упакованной и связанной с белками. Рибосомы могут располагаться в цитоплазме свободно или быть связанными с мембранами ЭПР. Свободные рибосомы могут быть единичными, но могут образовывать полисомы, когда на одной нити иРНК располагается последовательно несколько рибосом. Основная функция рибосом – синтез белка.

Цитоскелет – это опорно-двигательная система клетки, включающая белковые нитчатые (фибриллярные) образования, являющиеся каркасом клетки и выполняющие двигательную функцию. Структуры цитоскелета динамичны, они возникают и распадаются. Цитоскелет представлен тремя типами образований: промежуточными филаментами (нити диаметром 10 нм), микрофиламент ы (нити диаметром 5–7 нм) и микротрубочками . Промежуточные филаменты – неветвящиеся белковые структуры в виде нитей, часто расположенные пучками. Их белковый состав различен в разных тканях: в эпителии они состоят из кератина, в фибробластах – из виментина, в мышечных клетках – из десмина. Промежуточные филаменты выполнят опорно-каркасную функцию.

Микрофиламенты – это фибриллярные структуры, расположенные непосредственно под плазматической мембраной в виде пучков или слоев. Они хорошо видны в ложноножках амебы, в движущихся отростках фибробластов, в микроворсинках кишечного эпителия (рис. 13). Микрофиламенты построены из сократительных белков актина и миозина и являются внутриклеточным сократительным аппаратом.

Микротрубочки входят в состав как временных, так и постоянных структур клетки. К временным относится веретено деления, элементы цитоскелета клеток между делениями, а к постоянным – реснички, жгутики и центриоли клеточного центра. Микротрубочки – это прямые полые цилиндры с диаметром около 24 нм, их стенки образованы округлыми молекулами белка тубулина. Под электронными микроскопом видно, что сечение микротрубочки образовано 13 субъединицами, соединенными в кольцо. Микротрубочки присутствуют в гиалоплазме всех эукариотических клеток. Одна из функций микротрубочек – создание каркаса внутри клеток. Кроме того, по микротрубочкам, как по рельсам, перемещаются мелкие везикулы.

Клеточный центр состоит из двух центриолей, расположенных под прямым углом друг к другу и связанных с ними микротрубочек. Эти органеллы в делящихся клетках принимают участие в формировании веретена деления. Основой центриоли являются расположенные по окружности 9 триплетов микротрубочек, образующих полый цилиндр, шириной 0,2 мкм и длиной 0,3–0,5 мкм. При подготовке клеток к делению центриоли расходятся и удваиваются. Перед митозом центриоли участвуют в образовании микротрубочек веретена деления. Клетки высших растений не имеют центриолей, но у них есть аналогичный центр организации микротрубочек.

ОБЩАЯ ХАРАКТЕРИСТИКА БАКТЕРИЙ

Организмы, которые имеют клеточное строение, делятся на две группы: эукариоты и прокариоты.

Эукариоты (от греч. эу - хорошо и карион - ядро) - организмы, содержащие в клетках четко оформленное ядро. К эукариотам относятся одноклеточные и многоклеточные растения, грибы и животные, то есть все организмы, кроме бактерий. Клетки эукариот раз-ных царств различаются по ряду признаков. Но во многом их строение сходно. Каковы же особенности клеток эукариот?

В клетках животных нет клеточной оболочки, которая есть у растений и грибов, нет пластид, которые есть у растений и некоторых бактерий. Вакуоли в клетках животных очень малы и непостоянны. Центриоли у высших растений не обнаружены.

Клетки прокариот (от лат. про - вместо, впереди и кариот ) не имеют оформленного ядра. Ядерное вещество у них расположено в цитоплазме и не отграничено от нее мембраной. Прокариоты - наиболее древние примитивные одноклеточные организмы. К ним относят бактерии и цианобактерии (рис. 1). Размножаются они простым делением. У прокариот в цитоплазме расположена одиночная кольцевая молекула ДНК, которая называется нуклеоидом или бактериальной хромосомой . Непосредственно в цитоплазме располагаются рибосомы. Клетки прокариот гаплоидны. Они не содержат митохондрий, комплекса Гольджи, ЭПС. Синтез АТФ осуществляется в них на плазматической мембране.

Особое место в живой природе занимают вирусы . Они не имеют клеточного строения и состоят из молекулы нуклеиновой кислоты - ДНК или РНК, окруженной молекулами белка как оболочкой.

Вирусы вызывают ряд заболеваний у растений, грибов, животных и человека. Напри-мер, вирус табачной мозаики проникает в клетки листьев табака, разрушает хлорофилл, и лист становится пятнистым. Известны вирусные заболевания человека: оспа, грипп, корь, полиомиелит, бешенство и др.

Рис. 10. Схема строения клеток бактерий (А) и цианобактерий (Б):
1 - клеточная облолочка, 2 - хромосома, 3 - цитоплазма, 4 - плазматическая мембрана, 5 - рибосома, 6 - запасные вещества, 7 - жгутики.

Рис. 11. Вирус тобачной мозаики:
I - лист табака, пораженный болезнью, II - кристалл вируса в клетке, III - схема строения вируса табачной мозаики;
1 - оболочка из белковых молекул, 2 - тяж РНК, свернутый в спираль.

Задачи и тесты по теме "Тема 3. "Прокариотическая клетка. Вирусы"."

  • Химический состав клетки

    Уроков: 8 Заданий: 10 Тестов: 1

  • Растительная клетка - Клеточное строение растений Бактерии. Грибы. Растения (5–6 класс)

    Уроков: 1 Заданий: 7 Тестов: 1

  • Сходства и различия в строении клеток живых организмов - Цитология - наука о клетке Общие биологические закономерности (9–11 класс)

    Уроков: 2 Заданий: 11 Тестов: 1

  • Клеточная теория. Органоиды клетки, их функции - Цитология - наука о клетке Общие биологические закономерности (9–11 класс)
  • Назвать функции структур и указать, в каких клетках (растительных, животных или прокариотических) они находятся: ядро, ядерная мембрана, нуклеоплазма, хромосомы, плазматическая мембрана, рибосома, митохондрия, клеточная стенка, хлоропласт, вакуоль, лизосома, эндоплазматическая сеть гладкая (агранулярная) и шероховатая (гранулярная), клеточный центр, аппарат Гольджи, ресничка, жгутик, мезосома, пили или фимбрии.
  • Назвать не менее трех признаков, по которым можно отличить растительную клетку от животной.
  • Перечислить важнейшие различия между прокариотической и эукариотической клеткой.
  • Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

    • Тема 1. "Плазматическая мембрана." §1, §8 стр. 5;20
    • Тема 2. "Клетка." §8-10 стр. 20-30
    • Тема 3. "Прокариотическая клетка. Вирусы." §11 стр. 31-34
Клеточные структуры Эукариотическая клетка Прокариотическая клетка
Цитоплазматическая мембрана Есть Есть; впячивания мембраны образуют мезосомы
Ядро Имеет двумембранную оболочку, содержит одно или несколько ядрышек Нет; имеется эквивалент ядра - нуклеоид - часть цитоплазмы, где содержится ДНК, не окруженная мембраной
Генетический материал Линейные молекулы ДНК, связанные с бе ками Кольцевые молекулы ДНК, не связанные с белками
Эндоплазматическая сеть Есть Нет
Комплекс Гольджи Есть Нет
Лизосомы Есть Нет
Митохондрии Есть Нет
Пластиды Есть Нет
Центриоли, микротрубочки, микрофиламенты Есть Нет
Жгутики Если есть, то состоят из микротрубочек, окруженных цитоплазматической мембраной Если есть, то не содержат микротрубочек и не окружены цитоплазматической мембраной
Клеточная стенка Есть у растений (прочность, придает целлюлоза) и грибов (прочность придает хитин) Есть (прочность придает пептидогликан)
Капсула или слизистый слой Нет Есть у некоторых бактерий
Рибосомы Есть, крупные (80S) Есть, мелкие (70S)

Тесты:

1.Поддержка жизни на каком-либо уровне связано с явлением репродукции. На каком уровне организации, репродукция осуществляется на основе матричного синтеза

А. Молекулярном

Б. Субклеточном

В. Клеточном

Г. Тканевом

Д. На уровне организма

2. Установлено, что в клетках организмов отсутствуют мембранные органеллы и их наследственный материал не имеет нуклеосомной организации. Что это за организмы?

А. Простейшие

Б. Вирусы

В. Аскомицеты

Г. Эукариоты

Д. Прокариоты

3. На занятии по биологии преподаватель попросил указать в лабораторной работе степень увеличения микроскопа, которая использовалась при изучении микропрепаратов. Один из студентов не смог самостоятельно справиться с поставленной задачей. Как правильно подсчитать этот показатель?

А. Умножить показатели, указанные на всех объективах микроскопа

Б. Разделить показатель объектива с меньшим увеличением на показатель объектива с большим увеличением

В. Умножить показатели увеличения объектива и окуляра

Г. Разделить показатели увеличения объектива на показатель окуляра

Д. Вычесть показатели, указанные на всех объективах микроскопа, из значения увеличения окуляра

4. При изучении микропрепарата студент после его фиксации на предметном столике и достижения оптимальной освещённости поля зрения установил объектив «х40» и посмотрел в объектив. Преподаватель остановил студента и сказал, что при работе допущена принципиальная ошибка. Какая ошибка была допущена?

А. Не стоило фиксировать микропрепарат

Б. Изучение микропрепарата нужно было начать с помощью объектива с малым увеличением

В. Освещение регулируется в последнюю очередь

Г. Фиксация препарата производится перед завершением исследования

Д. Все манипуляции стоило проводить в обратном порядке

5. Существование жизни на всех уровнях определяется структурой более низкого уровня. Какой уровень организации предшествует и обеспечивает существование жизни на клеточном уровне:

А. Популяционно-видовой

Б. Тканевой

В. Молекулярный

Г. Организменный

Д. Биоценотический

Задачи для контроля знаний:

1. При попытке изучения микропрепарата с помощью светового микроскопа исследователь обнаружил, что всё поле зрения затемнено. Что может быть причиной этого явления? Как устранить эту проблему?

2. При попытке изучения микропрепарата с помощью светового микроскопа исследователь обнаружил, что освещена только половина поля зрения. Что может быть причиной этого явления? Как устранить эту проблему?

3. Какие манипуляции необходимо провести в случае, если при использовании светового микроскопа наблюдаемый объект виден нечётко?

А) если на окуляре есть обозначение «х15», а на объективе «х8»

Б) если кратность увеличения линзы окуляра «х10» , а объектива «х40»

6. Материалы для разбора с преподавателем и контроля его усвоения:

6.1. Разбор с преподавателем узловых вопросов для освоения темы занятия.

6.2. Демонстрация преподавателем методик практических приемов по теме.

6.3. Материал для контроля усвоения материала:

Вопросы для разбора с преподавателем:

1. Медицинская биология как наука об основах жизнедеятельности человека, изучающая закономерности наследственности, изменчивости, индивидуального и эволюционного развития, а также вопросы морфофизиологической и социальной адаптации человека к условиям окружающей среды в связи с его биосоциальной сущностью.

2. Современный этап развития общей и медицинской биологии. Место биологии в системе медицинского образования.

3. Сущность жизни. Свойства живого. Формы жизни, ее фундаментальные свойства и атрибуты. Определение понятия жизни на современном уровне развития биологической науки.

4. Эволюционно обусловленные структурные уровни организации жизни; элементарные структуры уровней и основные биологические явления, их характеризующие.

5. Значение представлений об уровнях организации живого для медицины.

6. Особое место человека в системе органического мира.

7. Соотношение физико-химических, биологических и социальных явлений в жизнедеятельности человека.

8. Оптические системы в биологических исследованиях. Строение светового микроскопа и правила работы с ним.

9. Техника изготовления временных микропрепаратов, их изучение и описание. Методы изучения структуры клетки

Практическая часть

1. Используя методические указания изучить строение микроскопа и правила работы с ним.

2. Отработать навыки работы с микроскопом и изготовления временных препаратов волокон ваты, чешуек крыла бабочки. Изучить микропрепараты: кожица луковицы, лист элодеи, мазок крови лягушки, изучить типографский шрифт.

3. Занести в протокол граф логической структуры “Строение микроскопа”.

4. Занести в протокол “Правила работы с микроскопом”

5. Заполнить таблицу «Уровни организации и исследования многоклеточного организма».

Похожая информация:

Поиск на сайте:

Прокариотические клетки по своему строению мельче и проще клеток эукариот. Среди них не бывает многоклеточных организмов, лишь иногда образуют подобие колоний. У прокариот нет ни только клеточного ядра, но и всех мембранных органелл (митохондрий, хлоропластов, ЭПС, комплекса Гольджи, центриолей и др.).

К прокариотам относятся бактерии, синезеленые водоросли (цианобактерии), археи и др. Прокариоты были первыми живыми организмами на Земле.

Функции мембранных структур выполняют выросты (впячивания) клеточной мембраны во внутрь цитоплазмы. Они бывают трубчатыми, пластинчатыми, иной формы. Ряд из них называют мезосомами. Фотосинтезирующие пигменты, дыхательные и другие ферменты располагаются на таких различных образованиях и таким образом выполняют свои функции.

У прокариот в центральной части клетки находится только одна большая хромосома (нуклеоид ), которая имеет кольцевое строение. В ее состав входит ДНК. Вместо белков, придающих форму хромосоме как у эукариот, здесь находится РНК. Хромосома не отделена от цитоплазмы мембранной оболочкой, поэтому говорят, что прокариоты - безъядерные организмы. Однако в одном месте хромосома прикреплена к клеточной мембране.

Кроме нуклеоида в строении прокариотических клеток отмечается наличие плазмид (малых хромосом также кольцевой структуры).

В отличие от эукариот цитоплазма прокариот неподвижна.

У прокариот есть рибосомы, однако они мельче рибосом эукариот.

Прокариотические клетки отличаются сложным строением своих оболочек. Кроме цитоплазматической мембраны (плазмалеммы), у них есть клеточная стенка, а также капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид).

На поверхности прокариот часто имеются жгутики (один или множество) и различные ворсинки.

С помощью жгутиков клетки перемещаются в жидкой среде. Ворсинки выполняют разные функции (обеспечивают несмачиваемость, прикрепление, переносят вещества, участвуют в половом процессе, образуя конъюгационный мостик).

Прокариотические клетки делятся бинарным делением. У них нет митоза и мейоза. Перед делением нуклеоид удваивается.

Прокариоты часто образуют споры, которые являются способом переживания неблагоприятных условий. Споры ряда бактерий сохраняют жизнеспособность при высокой и крайне низкой температурах. При образовании споры прокариотическая клетка покрывается толстой плотной оболочкой. Ее внутреннее строение несколько изменяется.

Строение эукариотической клетки

Клеточная стенка эукариотической клетки, в отличие от клеточной стенки прокариот состоит главным образом из полисахаридов. У грибов основным является азотсодержащий полисахарид хитин. У дрожжей 60–70% полисахаридов представлены глюканом и маннаном, которые связаны с белками и липидами. Функции клеточной стенки эукариот те же, что и у прокариот.

Цитоплазматическая мембрана (ЦПМ) также имеет трехслойную структуру. Поверхность мембраны имеет выпячивания, близкие к мезосомам прокариот. ЦПМ регулирует процессы обмена веществ клетки.

У эукариот ЦПМ способна захватывать из окружающей среды большие капли, содержащие углеводы, липиды и белки. Это явление называется пиноцитозом. ЦПМ эукариотической клетки способна также захватывать из среды твердые частицы (явление фагоцитоза). Кроме того, ЦПМ ответственна за выброс в среду продуктов обмена.

Рис. 2.2 Схема строения эукариотической клетки:

1 – клеточная стенка; 2 – цитоплазматическая мембрана;

3 – цитоплазма; 4 – ядро; 5 – эндоплазматическая сеть;

6 – митохондрии; 7 – комплекс Гольджи; 8 – рибосомы;

9 – лизосомы; 10 – вакуоли

Ядро отделено от цитоплазмы двумя мембранами, в которых имеются поры. Поры у молодых клеток открыты, служат они для миграции из ядра в цитоплазму предшественников рибосом, информационной и транспортной РНК. В ядре в нуклеоплазме имеются хромосомы, состоящие из двух нитевидных цепочных молекул ДНК, соединенных с белками. В ядре имеется также ядрышко, богатое матричной РНК и связанное со специфической хромосомой – ядрышковым организатором.

Основной функцией ядра является участие в размножении клетки. Это носитель наследственной информации.

В эукариотической клетке ядро – важнейший, но не единственный носитель наследственной информации. Часть такой информации содержится в ДНК митохондрии и хлоропластов.

Митохондрии – мембранная структура, содержащая две мембраны – наружную и внутреннюю, сильно складчатую. На внутренней мембране сосредоточены окислительно-восстанови-тельные ферменты. Основной функцией митохондрии является снабжение клетки энергией (образование АТФ). Митохондрии – саморепродуцирующая система, так как в ней имеется собственная хромосома – кольцевая ДНК и другие компоненты, которые входят в состав обычной прокариотической клетки.

Эндоплазматическая сеть (ЭС) – мембранная структура, состоящая из канальцев, которые пронизывают всю внутреннюю поверхность клетки. Бывает гладкой и шероховатой. На поверхности шероховатой ЭС располагаются рибосомы, более крупные, чем рибосомы прокариот. На мембранах ЭС расположены также ферменты, осуществляющие синтез липидов, углеводов и ответственных за транспорт веществ в клетке.

Комплекс Гольджи – пакеты уплощенных мембранных пузырьков – цистерн, в которых осуществляется упаковка и транспорт белков внутри клетки. В комплексе Гольджи происходит также синтез гидролитических ферментов (место образования лизосом).

В лизосомах сосредоточены гидролитические ферменты. Здесь происходит расщепление биополимеров (белков, жиров, углеводов).

Вакуоли отделены от цитоплазмы мембранами. В запасных вакуолях содержатся запасные питательные вещества клетки, а в шлаковых – ненужные продукты обмена и токсические вещества.

Самое очевидное отличие прокариот от эукариот заключается в наличии у последних ядра , что отражено в названии этих групп: «карио» с древнегреческого переводится как ядро, «про» — до, «эу» — хорошо. Отсюда прокариоты - это доядерные организмы, эукариоты - ядерные.

Однако это далеко не единственное и возможно не главное отличие прокариотических организмов от эукариот. В клетках прокариот вообще нет мембранных органоидов (за редким исключением) - митохондрий, хлоропластов, комплекса Гольджи, эндоплазматической сети, лизосом.

Их функции выполняют выросты (впячивания) клеточной мембраны, на которых располагаются различные пигменты и ферменты, обеспечивающие процессы жизнедеятельности.

У прокариот нет характерных для эукариот хромосом. Их основной генетический материал - это нуклеоид, обычно имеющий форму кольца. В эукариотических клетках хромосомы представляют собой комплексы ДНК и белков-гистонов (играют важную роль в упаковке ДНК). Эти химические комплексы называются хроматином. Нуклеоид прокариот не содержит гистонов, а форму ему придают связанные с ним молекулы РНК.

Хромосомы эукариот находятся в ядре. У прокариот нуклеоид находится в цитоплазме и обычно крепится в одном месте к мембране клетки.

Кроме нуклеоида в прокариотических клетках бывает разное количество плазмид - нуклеоидов существенно меньшего размера, чем основной.

Количество генов в нуклеоиде прокариот на порядок меньше, чем в хромосомах. У эукариот есть множество генов, выполняющих регуляторную функцию по отношению к другим генам. Это дает возможность эукариотическим клеткам многоклеточного организма, содержащим одну и ту же генетическую информацию, специализироваться; изменяя свой метаболизм, более гибко реагировать на изменения внешней и внутренней среды. Отличается и структура генов. У прокариот гены в ДНК располагаются группами - оперонами. Каждый оперон транскрибируется как единое целое.

Отличия прокариот от эукариот есть и в процессах транскрипции и трансляции. Самое главное заключается в том, что в прокариотических клетках эти процессы могут протекать одновременно на одной молекуле матричной (информационной) РНК: в то время как она еще синтезируется на ДНК, на готовом ее конце уже «сидят» рибосомы и синтезируют белок. В эукариотических клетках мРНК после транскрипции претерпевает так называемое созревание. И только после этого на ней может синтезироваться белок.

Рибосомы прокариот меньше (коэффициент седиментации 70S), чем у эукариот (80S). Отличается количество белков и молекул РНК в составе субъединиц рибосом. Следует отметить, что рибосомы (а также генетический материал) митохондрий и хлоропластов схожи с прокариотами, что может говорить об их происхождении от древних прокариотических организмов, оказавшихся внутри клетки-хозяина.

Прокариоты отличаются обычно более сложным строением своих оболочек. Кроме цитоплазматической мембраны и клеточной стенки у них также имеется капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид). Среди эукариот клеточная стенка есть у растений (ее основной компонент - целлюлоза), у грибов - хитин.

Прокариотические клетки делятся бинарным делением. У них нет сложных процессов клеточного деления (митоза и мейоза) , характерных для эукариот. Хотя перед делением нуклеоид удваивается, так же как хроматин в хромосомах. В жизненном цикле эукариот наблюдается чередование диплоидной и гаплоидной фаз. При этом обычно преобладает диплоидная фаза. В отличие от них у прокариот такого нет.

Клетки эукариот различны по размерам, но в любом случае существенно крупнее прокариотических (в десятки раз).

Питательные вещества в клетки прокариот поступают только с помощью осмоса. У эукариотических клеток кроме этого может также наблюдаться фаго- и пиноцитоз («захват» пищи и жидкости с помощью цитоплазматической мембраны).

В целом отличие прокариот от эукариот заключается в однозначно более сложном строении последних. Считается, что клетки прокариотического типа возникли путем абиогенеза (длительной химической эволюции в условиях ранней Земли). Эукариоты появились позже от прокариотов, путем их объединения (симбиотическая, а также химерная гипотезы) или эволюции отдельно взятых представителей (инвагинационная гипотеза). Сложность клеток эукариот позволила им организовать многоклеточный организм, в процессе эволюции обеспечить все основное разнообразие жизни на Земле.

Таблица отличий прокариот от эукариот

ПризнакПрокариотыЭукариоты Клеточное ядро Мембранные органоиды Оболочки клетки Генетический материал Деление Многоклеточность Рибосомы Обмен веществ Происхождение
Нет Есть
Нет. Их функции выполняют впячивания клеточной мембраны, на которых располагаются пигменты и ферменты. Митохондрии, пластиды, лизосомы, ЭПС, комплекс Гольджи
Более сложные, бывают различные капсулы. Клеточная стенка состоит из муреина. Основной компонент клеточной стенки целлюлоза (у растений) или хитин (у грибов). У клеток животных клеточной стенки нет.
Существенно меньше. Представлен нуклеоидом и плазмидами, которые меют кольцевую форму и находятся в цитоплазме. Объем наследственной информации значительный. Хромосомы (состоят из ДНК и белков). Характерна диплоидность.
Бинарное деление клетки. Есть митоз и мейоз.
Для прокариот не характерна. Представлены как одноклеточными, так и многоклеточными формами.
Мельче Крупнее
Более разнообразный (гетеротрофы, фотосинтезирующие и хемосинтезирующие различными способами автотрофы; анаэробное и аэробное дыхание). Автотрофность только у растений за счет фотосинтеза. Почти все эукариоты аэробы.
Из неживой природы в процессе химической и предбиологической эволюции. От прокариот в процессе их биологической эволюции.

Эукариотических клеток

Наиболее сложная организация присуща эукариотическим клеткам животных и растений. Строение клеток животных и растений характеризуется принципиальным сходством, но форма, размеры и масса их чрезвычайно разнообразны и зависят от того, является ли организм одноклеточным или многоклеточным. Например, диа-томовые водоросли, эвгленовые, дрожжи, миксомицеты и простейшие являются одноклеточными эукариотами, тогда как организмы подавляющего большинства других типов являются многоклеточными эукариотами, количество клеток у которых составляет от нескольких (например, у некоторых гельминтов) до миллиардов (у млекопитающих) на организм. Организм человека состоит из около 10 различных клеток, которые различаются между собой по осуществляемым ими функциям.

В случае человека насчитывают более 200 типов разных клеток. Наиболее многочисленными клетками в организме человека являются эпителиальные клетки, среди которых различают орого-вевающие клетки (волос и ногтей), клетки, обладающие всасывательной и барьерной функциями (в желуд очно-кишечном тракте, мочеполовых путях, роговице, влагалище и других системах органов), клетки, выстилающие внутренние органы и полости (пневмо-циты, серозные клетки и многие другие). Различают клетки, обеспечивающие метаболизм и накопление резервных веществ (гепатоциты, жировые клетки). Большую группу составляют эпителиальные и соединительнотканные клетки, секретизирующие внеклеточный матрикс (амилобласты, фибробласты, остеобласты и другие) и гормоны, а также сократительные клетки (скелетных и сердечных мышц, радужной оболочки и других структур), клетки крови и иммунной системы (эритроциты, нейтрофилы, эозинофилы, базофилы, Т-лимфоциты и другие). Существуют также клетки, выполняющие роль сенсорных преобразователей (фоторецепторы, осязательные, слуховые, обонятельные, вкусовые и другие рецепторы). Значительное число клеток представлено нейронами и гли-альными клетками центральной нервной системы. Существуют также специализированные клетки хрусталика глаза, пигментные клетки и питающие клетки, далее следует назвать подовые клетки. Известны и многие другие типы клеток человека.

В природе не существует некой типичной клетки, ибо все они характеризуются чрезвычайным разнообразием. Тем не менее все эукариотические клетки существенно отличаются от прокариотических клеток по ряду свойств и прежде всего по объему, форме и размерам. Объем большинства эукариотических клеток превышает объем прокариотов в 1000-10 000 раз. Такой объем прокариотических клеток связан с содержанием в них различных органелл, осуществляющих всевозможные клеточные функции. Для эукариотических клеток характерно также наличие большого количества генетического материала, сосредоточенного в основном в относительно большом количестве хромосом, что обеспечивает им большие возможности в дифференцировке и специализации.

Не менее важной особенностью эукариотических клеток является то, что им присуща компартментализация, обеспеченная наличием внутренних мембранных систем. В результате этого многие ферменты локализуются в определенных компартментах. Например, почти все ферменты, катализирующие синтез белков в животных клетках, локализованы в рибосомах, тогда как ферменты, катализирующие синтез фосфолипидов, в основном сосредоточены на клеточной ци-топлазматической мембране. В отличие от прокариотических клеток в эукариотических клетках имеется ядрышко.

Эукариотические клетки по сравнению с прокариотическими обладают более сложной системой восприятия веществ из окружающей среды, без чего невозможна их жизнь. Существуют и другие различия между эукариотическими и прокариотическими клетками.

Форма клеток бывает самой разнообразной и часто зависит также от выполняемых ими функций. Например, многие простейшие имеют овальную форму, тогда как эритроциты являются овальными дисками, а мышечные клетки млекопитающих вытянуты. Размеры эукариотических клеток являются микроскопическими (табл. 3).

Некоторые виды клеток характеризуются значительными размерами. Например, размеры нервных клеток у крупных животных достигают нескольких метров в длину, а у человека - до 1 метра. Клетки отдельных тканей растений достигают нескольких миллиметров в длину.

Считают, что чем крупнее организм в пределах вида, тем крупнее его клетки. Однако для родственных видов животных, различающихся по размерам, характерны и сходные по размерам клетки. Например, у всех млекопитающих сходны по размерам эритроциты.

Клетки различаются также и по массе. Например, одиночная клетка печени (гепатоцит) человека весит 19-9 г.

Соматическая клетка человека (типичная эукариотическая клетка) представляет собой образование, состоящее из множества структурных компонентов микроскопических и субмикроскопических размеров(рис. 46).

Использование электронной микроскопии и других методов позволило установить чрезвычайное разнообразие в структуре как оболочки и цитоплазмы, так и ядра. В частности, был установлен мембранный принцип строения внутриклеточных структур, исходя из которого различают ряд структурных компонентов клетки, а именно.

Прочитаем информацию.

Клетка - сложная система, состоящая из трех структурно-функциональных подсистем поверхностного аппарата, цитоплазмы с органоидами и ядра.

Прокариоты (доядерные) - клетки, не обладающие, в отличие от эукариотов, оформленным клеточным ядром и другими внутренними мембранными органоидами.

К прокариотическим клеткам относят клетки бактерий, (сине-зеленые водоросли), .

Строение прокариотических клеток

Структура

Строение и состав

Функции структуры

Плазматическая мембрана

У некоторых микроорганизмов - выпячивания внутрь клетки, образующие стопки плоских мешочков (мезосомы)

У цианобактерий и некоторых пурпурных бактерий - множество мембранных

1.транспортная

2.защитная

5.восприятие сигналов внешней среды

6.участие в иммунных процессах

7.обеспечение поверхностных свойств клетки

Неоформленное ядро, т.е. нуклеарная область, не имеет ядерной мембраны (оболочки).

Содержит одну кольцевую молекулу ДНК - нуклеотид, которую называют бактериальной хромосомой.

Кроме нуклеотида часто встречается небольшая кольцевая молекула ДНК - .

Хранение и реализация наследственной информации, и передача ее дочерним поколениям.

Цитоплазма

Очень мало мембранных органоидов (ЭПС, аппарат Гольджи, пластиды, митохондрии).

Очень много рибосом более мелких, чем у эукариотов.

Синтез белков

Рибосомы

Мельче по размерам, чем у эукариот и расположены в цитоплазме свободно (не образуют ).

Синтез белков

Клеточная стенка

Состоит из комплексов белков и олигосахаридов, уложенных слоями.

Белковые нити, не образуют микротрубочек. Состоят из трех структур , и .

Движение

Муреин (пептидогликан) — это важнейший компонент клеточной стенки бактерий, который выполняет опорную и защитную функции. Он имеет сетчатую структуру и образует жёсткий наружный каркас клетки. Состоит из углеводов и белков. Вещества, убивающие бактерий (лизоцим, антибиотики), разрушают муреин или нарушают его образование.

Цианобактерии (сине-зеленые водоросли) - группа крупных грамотрицательных бактерий, способных к фотосинтезу.

Археи - группа микроскопических одноклеточных орагнизмов-прокариот, резко отличающихся по ряду физиолого-биохимических свойств от истинных бактерий (эубактерий). Группу архебактерий выделили в 1977. Среди них нет возбудителей инфекционных болезней.

Тилакоиды - ограниченные мембраной компартменты внутри хлоропластов и цианобактерий. В тилакоидах происходят светозависимые реакции фотосинтеза.

Рецепция в физиологии - осуществляемое рецепторами восприятие раздражителей и преобразование в нервное возбуждение.

Полисома (полирибосома) - структура клеточной цитоплазмы, которая состоит из нескольких рибосом, соединенных с помощью молекул информационной (матричной) РНК.

Жгутики бактерий - состоят из трех субструктур:

  • филамент (фибрилла, пропеллер) - полая белковая нить толщиной 10-20 нм и длиной 3-15 мкм.
  • крюк - более толстое, чем филамент (20-45 нм), белковое образование.
  • базальное тело - образование, расположенное у основания жгутика. Имеет форму цилиндра. Длина около 0,5 мкм.

Плазмиды - дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы ДНК.

Используемая литература:

1.Биология: полный справочник для подготовки к ЕГЭ. / Г.И.Лернер. - М.: АСТ: Астрель; Владимир; ВКТ, 2009

2.Биология: учеб. для учащихся 11 класса общеобразоват. Учреждений: Базовый уровень / Под ред. проф. И.Н.Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2008.

3.Биология для поступающих в вузы. Интенсивный курс / Г.Л.Билич, В.А.Крыжановский. - М.: Издательство Оникс, 2006.

4.Общая биология: учеб. для 11 кл. общеобразоват. учреждений / В.Б.Захаров, С.Г.Сонин. - 2-е изд., стереотип. - М.: Дрофа, 2006.

5.Биология. Общая биология. 10-11 классы: учеб. для общеобразоват. учреждений: базовый уровень / Д.К.Беляев, П.М.Бородин, Н.Н.Воронцов и др. под ред. Д.К.Беляева, Г.М.Дымшица; Рос. акад. наук, Рос. акад. образования, изд-во «Просвещение». - 9-е изд. - М.: Просвещение, 2010.

6.Биология: учеб.-справ.пособие / А.Г.Лебедев. М.: АСТ: Астрель. 2009.

7.Биология. Полный курс общеобразовательной средней школы: учебное пособие для школьников и абитуриентов / М.А.Валовая, Н.А.Соколова, А.А. Каменский. - М.: Экзамен, 2002.

Используемые Интернет-ресурсы:

Википедия. Жгутик

Опорно-двигательные структуры клетки