Стерео зрение и бинокулярное зрение. Упражнения для бинокулярного зрения в домашних условиях. Как диагностировать бинокулярное зрение

Бинокулярное (стереоскопическое) зрение – видение человеком окружающего мира двумя глазами. Данная способность обусловлена происходящем в головном мозге сложным механизмом слияния изображений, получаемых от каждого глаза.

Благодаря стереоскопическому зрению человек способен воспринимать окружающие предметы в трехмерном изображении (т.е. рельефно и объемно). Монокулярное зрение ограничивает человека в профессиональном плане, т.е. он не может заниматься деятельностью, связанной с точными действиями вблизи предмета (например, попадание ниткой в иголку).

Образование единого зрительного образа возможно при условии попадания изображений на идентичные участки сетчатки глаз.

Формирование объемного зрения

Каждый новорожденный обладает монокулярным зрением и не может фиксировать свой взгляд на окружающих предметах. Однако через 1,5-2 месяца у младенца начинает развиваться способность видеть двумя глазами, что и обуславливает возможность фиксации взглядом предметов.

На 4-6 месяцах у ребенка появляются многие рефлексы, как безусловные, так и условные (например, реакция зрачков на свет, координированные движения обоих глаз и др.).

Однако полноценное бинокулярное зрение, которое включает способность определения не только формы и объемности предметов, но и их пространственного расположения, окончательно развивается после того, как ребенок начинает ползать и ходить.

Условия стереоскопического зрения

Полноценное бинокулярное зрение возможно при следующих условиях:

  • острота зрения обоих глаз не менее 0,5;
  • нормальный тонус глазодвигательных мышц;
  • отсутствие травм, воспалительных заболеваний и опухолей глазницы, что может предопределить асимметричное расположение глазных яблок;
  • отсутствие патологий сетчатки, проводящих путей, а также коркового отдела.

Методы исследования

Существуют несколько способов определения стереоскопического зрения человека.

Проба со спицами. Врач держит спицу на расстоянии вытянутой руки в вертикальном положении, пациент располагается напротив и должен кончиком своей спицы дотронуться до спицы доктора так, чтобы получилась прямая из двух спиц. Глаза обследуемого открыты. Врач несильно надавливает на глазное яблоко в области век, при этом у пациента возникает двоение (в случае стереоскопического зрения).

Опыт с «дырой» в ладони. Пациент одним глазом смотрит через трубу, к концу которой со стороны второго глаза подставляет ладонь. В норме обследуемый должен увидеть отверстие в ладони, а в этом отверстии – изображение, которое он видит через трубку первым глазом.

Патология стереоскопического зрения

Бинокулярное зрение может быть нарушено при отклонении зрительной оси одного глаза кнаружи, кнутри, кверху или книзу. Такое явление называется гетерофорией (скрытым косоглазием).

Для более полного ознакомления с болезнями глаз и их лечением – воспользуйтесь удобным поиском по сайту или задайте вопрос специалисту.

Глаз формируется двумерное изображение, но невзирая на это, человек воспринимает глубину пространства, то есть имеет трехмерное, стереоскопическое зрение. Люди оценивают глубину благодаря разным механизмам. При наличии данных о величине предмета расценить расстояние к нему или понять, какой из объектов находится более близко, можно путем сравнения угловой величины объекта. Когда один предмет находится впереди другого и его частично заслоняет, то человеком передний объект воспринимается на более близком расстоянии. Если взять, например, проекцию параллельных линий (железнодорожных рельсов), которые уходят вдаль, то в проекции эти линии будут сближаться. Это является примером перспективы - весьма эффективного показателя глубины пространства.

Механизмы стереоскопического зрения

Выпуклый участок стены выглядит в верхней своей части более светлым, когда источник света расположен выше, а вот углубление в ее поверхности выглядит в верхней части более темным.

Удаленность предмета можно определить по такому важному признаку, как параллакс движения. Это кажущееся относительное смещение более далеких и близких предметов при движении головой в разных направлениях (вверх и вниз или вправо и влево). Все имели возможность наблюдать «железнодорожный эффект»: если смотреть из окна движущегося поезда, кажется, что скорость предметов, которые расположены более близко, большая, чем тех, которые находятся на большом расстоянии.

Стереопсис

Критерием удаленности предметов является величина глаза (напряжение цилиарного тела и цинновых связок, которые управляют ). Об удаленности объекта наблюдения также можно судить по усилению дивергенции или конвергенции. Все вышеперечисленные показатели удаленности, за исключением предпоследнего, монокулярные. Наиболее важным механизмом восприятия глубины пространства является стереопсис. Он зависит от возможности совместного использования двух глаз. Дело в том, что, когда человек рассматривает любую трехмерную сцену, каждый его глаз формирует несколько неодинаковые изображения на сетчатках. В процессе стереопсиса в коре головного мозга происходит сравнение изображения одной и той же сцены на обеих сетчатках и оценка относительной глубины. Процесс слияния двух монокулярных изображений, которые видны раздельно левым и правым глазом при рассматривании объекта одновременно обоими глазами, в одно объемное изображение, называется фузией.

Диспарантность

Диспарантностью называют отклонение от положения корреспондирующих точек (точки на сетчатках правого и левого глаза, в которых позиционируется одно и то же изображение). Если это отклонение не превышает в горизонтальном направлении 2°, а по вертикали - не больше нескольких угловых минут, то человек будет визуально воспринимать одиночную точку в пространстве как расположенную ближе, чем сама точка фиксации. В том случае, когда расстояния между проекциями точки меньше, а не больше, чем между корреспондирующими точками, будет казаться, что она расположена дальше точки фиксации. Третий вариант: если горизонтальное отклонение будет больше 2°, вертикальное превышает несколько угловых минут, то мы сможем увидеть две отдельные точки. Они могут казаться расположенными ближе или дальше точки фиксации. Этот эксперимент лежит в основе созданий целой серии стереоскопических приборов - от стереоскопа Уитстона до стереотелевидения и стереодальномеров.

Проверка стереопсиса

Не все люди могут воспринимать глубину с помощью стереоскопа. Поверить свой стереопсис можно при помощи такого рисунка. При наличии стереоскопа можно сделать копии стереопар, которые на нем изображены, и вставить их в стереоскоп. Также можно между двумя изображениями одной стереопары расположить перпендикулярно тонкий лист картона и, установив глаза параллельно, попытаться смотреть на свое изображение каждым глазом.

В США в 1960 году Бела Юлеш предложил использовать оригинальный способ демонстрации стереоэффекта, который исключает монокулярное наблюдение объекта. Книги, основанные на этом принципе, можно использовать также для тренировки стереопсиса. Один из рисунков представлен на рис.3. Если смотреть вдаль, как бы сквозь рисунок, можно увидеть стереоскопическую картину. Эти рисунки называются автостереограммами.

На основании этого метода создано устройство, которое позволяет исследовать порог стереоскопического зрения. Существует его модификация, которая позволяет повысить точность определения порога стереоскопического зрения. Каждому глазу наблюдателя представляются тест-объекты на рандомизированном фоне. Каждый из них является совокупностью точек на плоскости, которые расположены по индивидуальному вероятностному закону. Каждый тест-объект имеет идентичные области точек, представляющие собой фигуру произвольной формы. В том случае, когда значения параллактических углов идентичные точки фигур, расположенных на тест-объекте, нулевые, то наблюдатель может увидеть в обобщенном изображении точки, которые расположены в произвольном порядке. Он не способен выделить на рандомизированном фоне определенную фигуру. Так исключается монокулярное видение фигуры.

При перемещении одного из тест-объектов перпендикулярно оптической оси системы изменяется параллактический угол между фигурами. Когда он достигнет некоторого значения, наблюдатель сможет увидеть фигуру, которая как бы отрывается от фона и начинает или удаляться, или же приближаться к нему. Параллактический угол измеряют при помощи оптического компенсатора, который введен в одну из ветвей прибора. Когда фигура появляется фигуры в поле зрения, ее фиксирует наблюдатель, и на индикаторе появляется соответствующее значение порога стереоскопического зрения.

Нейрофизиология стереоскопического зрения

Благодаря исследованиям в области нейрофизиологии стереоскопического зрения в первичной зрительной коре головного мозга удалось выявить специфические клетки, которые настроены на диспарантность. Они существуют двух типов:

  • клетки первого типа реагируют только тогда, когда стимулы точно попадают на корреспондирующие участки обеих сетчаток;
  • вторая разновидность клеток отвечает только в том случае, когда предмет расположен дальше точки фиксации;
  • также имеются такие клетки, которые реагируют в том случае, когда стимул находится ближе точки фиксации.

Все эти клетки обладают свойством ориентационной избирательности. Они обладают хорошей реакцией на концы линий и движущиеся стимулы. Некоторые бинокулярные стимулы обрабатываются в коре головного мозга непонятно как. Также существует борьба полей зрения. В том случае, когда на сетчатках обоих глаз создаются изображения, которые сильно различаются между собой, то часто одно из них вообще перестает восприниматься. Этот феномен означает, что, если зрительная система не способна объединить изображения на двух сетчатках, она полностью или частично отвергает один из образов.

Для нормального стереоскопического зрения нужны следующие условия:

  • адекватная работа глазодвигательной системы глазных яблок;
  • достаточная острота зрения;
  • минимальная разница в остроте зрения обоих глаз;
  • прочная связь между аккомодацией, фузией и конвергенцией;
  • небольшое различие в масштабах изображений в обоих глазах.

Если на сетчатке левого и правого глаза при рассматривании одного и того же предмета изображение имеет разные размеры или неодинаковый масштаб, это называется . Она является одной из многих причин того, что стереоскопическое зрение становится неустойчивым или вовсе отсутствует. Анизейкония чаще всего развивается при наличии (разной глаз). Если она не превышает 2 - 2,5%, то можно провести коррекцию обычными стигматическими линзами. При более высокой анизейконии приходится использовать анизейконические очки.

Одной из причин появления является нарушение связи между конвергенцией и аккомодацией. При явном косоглазии имеется не только косметический изъян, но и снижается острота остроты зрения косящего глаза. Он может вообще выключиться из процесса восприятия образов. В случае скрытого косоглазия, или гетерофории, косметический дефект отсутствует, но оно может препятствовать стереопсису. Лица с гетерофорией, превышающей 3°, не способны работать с бинокулярными приборами.

Порог стереоскопического зрения находится в зависимости от разных факторов:

  • от яркости фона;
  • контраста объектов;
  • продолжительности наблюдения.

При оптимальных условиях наблюдении порог восприятия глубины находится в диапазоне от 10 - 12 до 5″.

Оценивать, определять и исследовать стереоскопическое зрение можно несколькими методами:

  • с помощью стереоскопа по таблицам Пульфриха (в этом случае минимальный порог стереоскопического восприятия равен 15″);
  • различного вида стереоскопами с набором более точных таблиц (диапазон измерения - от 10 до 90″);
  • применяя устройство, использующее рандомизированный фон, который исключает монокулярное наблюдение объектов (допустимая погрешность измерения равна 1 - 2″).

21.06.2015


При обработке материалов аэрофотосъемки, дешифрировании аэроснимков и аэротаксации лесов широко применяется стереоскопическое зрение. Оно значительно повышает точность измерений, поэтому кратко ознакомимся с основными его свойствами.
Чтобы лучше уяснить сущность стереоскопического зрения, рассмотрим устройство человеческого глаза. Глаз человека представляет собой шарообразное тело, состоящее из трех оболочек; склеры, сосудистой оболочки и сетчатки (рис. 53).
Склерой называется наружная твердая белковая оболочка. К ней прилегает сосудистая оболочка, переходящая в утолщенную и непрозрачную радужную оболочку, в которой размещается зрачок глаза. Он может изменять свой диаметр, являясь диафрагмой, регулирующей количество света, попадающего в глаз.

Расстояние между центрами зрачков глаза называется глазным базисом. Он у разных людей меняется от 58 до 72 мм. В среднем он равен 65 мм. За зрачком расположен хрусталик. Он представляет собой двояковыпуклую линзу и его можно рассматривать как объектив глаза, служащий для построения на сетчатке изображений наблюдаемых предметов. Чтобы изображения различно удаленных от нас предметов были резкими, форма хрусталика при помощи мышц изменяется, в связи с чем меняется и его фокусное расстояние (от 12 до 16 мм). Способность глаза изменять кривизну поверхностей хрусталика называется аккомодацией. Оболочка выстилает внутреннюю поверхность глаза и называется сетчаткой. Чувствительные элементы ее состоят из палочек и колбочек, являющихся окончаниями разветвлений глазного нерва и передающих свое раздражение через нервную систему в мозг наблюдателя.
Палочки и колбочки расположены на сетчатке неравномерно. Важный участок сетчатки - желтое пятно. Оно является местом наиболее ясного видения, расположено в середине сетчатки, против зрачка и несколько смещено от оси симметрии глаза. Желтое пятно состоит главным образом из колбочек.
Изображение предметов, которое дает хрусталик, строится в пределах желтого пятна. Наиболее чувствительной к свету частью желтого пятна является углубление, находящееся в желтом пятне. Оно называется центральной ямкой. Диаметр ее 0,4 мм. Прямая, проходящая через центральную ямку и центр хрусталика, называется зрительной осью глаза.
Для того чтобы нормальный глаз видел предметы без особого напряжения, расстояние до них должно быть около 250 мм. Оно называется расстоянием наилучшего зрения.


Зрение одним глазом называется монокулярным. Оно позволяет определить положение предмета в плоскости и обладает определенной разрешающей способностью. Разрешающей способностью (остротой) зрения называется минимальный угол, под которым глаз еще различает две точки раздельно. Разрешающая способность глаза порядка 30-40". Она зависит от особенностей глаза и условий наблюдений.
Глубина пространства ощущается при бинокулярном зрении (зрения двумя глазами). Оно обладает двумя замечательными свойствами. Первым его свойством является слияние в зрительном впечатлении двух изображений, получаемых на сетчатках глаз, в одно пространственное изображение.
Второе свойство - оценка глубины, т. е. удаленности наблюдаемых предметов. Только на больших расстояниях бинокулярное ощущение глубины пространства не отличается от монокулярного зрения. При переходе к более близким предметам оно превращается в стереоскопическое зрение, оставаясь бинокулярным. Следовательно, стереоскопическое зрение является частным случаем бинокулярного зрения, при котором наиболее отчетливо воспринимается глубина пространства, рельефность объектов местности и их пространственное расположение.
Рассмотрим некоторые свойства стереоскопического зрения.
При бинокулярном зрении наблюдатель устанавливает глаза так, что их зрительные оси пересекаются на том предмете, который мы рассматриваем. Точка пересечения зрительных осей называется точкой фиксации М (рис. 54), При фиксации внимания на какой-либо точке возникает поле ясной видимости. Оно ограничено размером центральных ямок глаз. В пределах поля ясной видимости возникает стереоскопическое зрение наибольшей отчетливости. При стереоскопическом зрении на сетчатке глаз изображения различно удаленных точек получаются на разных расстояниях от центров желтых пятен.
Разность этих расстояний называется физиологическим параллаксом

Чем дальше по глубине точка К отстоит от точки М, тем больше будет с.
Угол пересечения зрительных осей глаз называется углом конвергенции γс. Чем ближе от наблюдателя точка, тем угол γс больше и, наоборот, при удалении точки угол γс уменьшается. Предельно малая разность параллактических углов γс-γ"с (см. рис. 54), воспринимаемая наблюдателем, называется остротой стереоскопического зрения. Величина ее порядка 20-30" для отдельно взятых точек, а для вертикальных линий - 10-15".
Из равнобедренного треугольника MSS" следует, что br/2: L = tg γc/2, где L является удалением (расстоянием) точки М от глазного базиса.
Если угол γc/2 мал, то

где γc выражен в радианах.
Эта формула позволяет судить об удалении L предметов или объектов местности от наблюдателя.
При переходе от точки М к другой точке K (рис. 55) в поле ясной видимости и при соответствующем изменении параллактического угла γ"с, преобразуя формулу (42), получим


Формулы (42) и (43) являются основными формулами стереоскопического зрения.
Если принять γc = 30", bг = 65 мм, то из формулы (42) следует, что

В данном случае угол γc равен остроте стереоскопического зрения, поэтому Lг = 450 м является радиусом невооруженного стереоскопического зрения. При расстоянии больше 450 м наблюдатель не получает пространственного восприятия объектов и местность ему должна казаться плоской.
Радиус стереоскопического зрения можно увеличить путем увеличения базиса и остроты стереоскопического зрения. С этой целью применяются специальные приборы, у которых за счет введения зеркал или призм увеличивается базис, а за счет введения линз повышается острота стереоскопического зрения. Такого рода приборы называются стереоскопическими.
Стереоскопическое восприятие можно получить, не только рассматривая сами предметы местности, но и их перспективные изображения - аэроснимки.
Во время плановой аэросъемки каждый следующий аэроснимок на 60% перекрывает предыдущий аэроснимок.


Расположим смежные аэроснимки - стереопару перед глазами так, чтобы в поле зрения находились перекрывающиеся части и базис съемки был параллелен глазному базису (рис. 56).
Раздвигая эти аэроснимки вдоль линии базиса аэрофотосъемки на соответствующую величину и рассматривая одно и то же изображение в местах перекрытия левым и правым глазом, получим вместо двух одно пространственное изображение местности, дающее ясное представление о соотношении высоты между различными объектами. Стереоскопическое изображение заснятой местности называется стереоскопической моделью местности.
Стереоскопический эффект возникает потому, что разность продольных параллаксов Δр точек аэроснимков при рассматривании преобразуется в разность физиологических параллаксов.
Для получения стереоэффекта пользуются специальными приборами - стереоскопами. Стереоскоп позволяет одним глазом видеть одно изображение, другим - другое.
Если левый глаз видит левый аэроснимок, а правый - правый, то возникает прямой стереоэффект (горы изображаются горами, лощины - лощинами), рис, 56, а.
Если левый глаз видит правый аэроснимок, а правый-левый, возникает обратный стереоэффект (горы изображаются лощинами, а лощины - горами) - см. рис. 56,6, Если аэроснимки, подготовленные для прямого стереоэффекта, повернуть на 90°, то возникает нулевой стереоэффект. В этом случае все объекты будут казаться лежащими в одной плоскости (см. рис. 56,а).
Рассмотрим устройство зеркального стереоскопа. Он состоит из четырех зеркал, попарно параллельных между собой (рис. 57).


При работе с зеркальным стереоскопом лучи o1m1 и o2m2 которые от аэроснимка первоначально идут вертикально, после отражения пойдут горизонтально, затем от вторых зеркал опять пойдут вертикально и попадут в глаза наблюдателю.
Расстояние o1m1k1S1 = o2m2k2S2 = fc, где главное расстояние стереоскопа, измеряемое от центра зеркала по ходу луча до аэрофотоснимка.
Следует заметить, что при рассматривании аэрофотоснимков под стереоскопом получается мнимая модель (стереомодель), так как действительного пересечения лучей не происходит.
Увеличение видимого изображения на аэрофотоснимках, рассматриваемых под стереоскопом, равно отношению расстояния наилучшего зрения ρ0 к главному расстоянию стереоскопа Vc = ρ0/fc. У зеркального стереоскопа fс = 250, поэтому Vc = 1X.
Если между зеркалами установлены линзы, то fc замеряется от центра линзы по ходу главного луча до плоскости аэроснимка.
Для определения тон минимальном разности высот hmin (превышений точек), которые видим на аэроснимках, преобразуем вторую из основных формулу стереозрения ΔL = L2v/bг, в которой ΔL заменим hmin (или Δh), L - высотой фотографирования Н, bг - базисом фотографирования В.
Тогда получим

С учетом относительного увеличения стереоскопа формула для hmin примет следующий вид:

Но базис b в масштабе аэроснимка b = B f/H. Тогда hmin = H2fc/bH v, или hmin = Hfc/b v. По этой формуле определяется минимальная разность высоты объектов, оцениваемая с помощью стереоскопа.
При визуальной оценке высоты с помощью стереоскопа следует учесть, что имеет место различие в вертикальных и горизонтальных масштабах стереомодели, вследствие чего утрируются вертикальные размеры объектов местности и ее рельеф.
Для вывода формулы вертикального масштаба воспользуемся следующими формулами стереофотограмметрии:
формулой, применяемой для определения превышения объекта, наблюдаемого в стереоскоп hс,

Из этой формулы (47) следует:

Если учесть увеличение стереоскопом vс, то формула примет следующий вид:

Эта формула показывает, что вертикальный масштаб будет крупнее горизонтального во столько раз, во сколько f меньше ρ0 (250 мм) (полагая, что для 60%-кого продольного перекрытия аэроснимков формата 18x18 см b≈bг) и увеличивается пропорционально величине vc. Например, при аэрофотосъемке аэрофотоаппаратами с фокусным расстоянием 70 и 100 мм и при расстоянии в стереоскопе от глаза до аэроснимка ρ0=250 мм, видимый в стереоскоп рельеф окажется утрированным, т. е. вытянутым вверх в 3,5 и 2,5 раза по сравнению с действительным.
Изложенные выше свойства стереомодели необходимо внимательно учитывать при лесном дешифрировании аэроснимков и особенно при глазомерно-стереоскопическом способе измерения высоты деревьев и насаждений.

30-09-2011, 10:29

Описание

Мозолистое тело представляет собой мощный пучок миелинизированных волокон, соединяющих два полушария мозга. Стереоскопическое зрение (стереопсис) - это способность воспринимать глубину пространства и оценивать удаленность предметов от глаз. Эти две вещи не особенно тесно связаны друг с другом, однако известно, что небольшая часть волокон мозолистого тела все же играет некоторую роль в стереопсисе. Оказалось удобным включить обе эти темы в одну главу, так как при их рассмотрении придется учитывать одну и ту же особенность устройства зрительной системы, а именно то, что в хиазме имеются как перекрещенные, так и неперекрещенные волокна зрительного нерва.

Мозолистое тело

Мозолистое тело (по-латыни corpus callosum) - это самый крупный пучок нервных волокон во всей нервной системе. По приближенной оценке в нем насчитывается около 200 млн. аксонов. Истинное число волокон, вероятно, еще больше, так как приведенная оценка основана на данных обычной световой, а не электронной микроскопии.

Это число несравнимо с числом волокон в каждом зрительном нерве (1,5 млн.) и в слуховом нерве (32 000). Площадь поперечного сечения мозолистого тела составляет около 700 мм в квадрате, тогда как у зрительного нерва она не превышает нескольких квадратных миллиметров. Мозолистое тело вместе с тонким пучком волокон, называемым передней комиссурой , соединяет два полушария мозга (рис. 98 и 99).


Термин комиссура означает совокупность волокон, соединяющих две гомологичные нервные структуры, расположенные в левой и правой половинах головного или спинного мозга. Мозолистое тело тоже иногда называют большой комиссурой мозга.

Примерно до 1950 года роль мозолистого тела была совершенно неизвестна. В редких случаях наблюдается врожденное отсутствие (аплазия ) мозолистого тела. Это образование может также быть частично или полностью перерезано во время нейрохирургической операции, что делается намеренно - в одних случаях при лечении эпилепсии (чтобы судорожный разряд, возникающий в одном полушарии мозга, не мог распространиться на другое полушарие), в других случаях для того, чтобы добраться сверху до глубоко расположенной опухоли (если, например, опухоль находится в гипофизе). По наблюдениям невропатологов и психиатров, после такого рода операций не возникает никаких расстройств психики. Кто-то даже высказал мысль (хотя вряд ли всерьез), что единственная функция мозолистого тела состоит в том, чтобы удерживать два полушария мозга вместе. Вплоть до 1950-х годов мало что было известно о деталях распределения связей в мозолистом теле. Очевидно было, что мозолистое тело соединяет два полушария, и на основании данных, полученных довольно грубыми нейрофизиологическими методами, считали, что в стриарной коре волокна мозолистого тела связывают в точности симметричные участки двух полушарий.

В 1955 году Рональд Майерс , аспирант психолога Роджера Сперри из Чикагского университета, впервые провел эксперимент, в котором удалось выявить некоторые функции этого огромного волокнистого тракта. Майерс занимался обучением кошек, помещенных в ящик с двумя поставленными рядом экранами, на которые можно было проецировать различные изображения, например круг на один экран и квадрат - на другой. Кошку обучали упираться носом в тот экран, на котором было изображение круга, и игнорировать другой - с изображением квадрата. Правильные ответы подкреплялись пищей, а за ошибочные ответы кошек слегка наказывали - включался громкий звонок, и кошку не грубо, но решительно оттаскивали от экрана. Таким методом за несколько тысяч повторений кошку удается довести до уровня надежного различения фигур. (Кошки обучаются медленно; например, голубям для обучения в аналогичной задаче требуется от нескольких десятков до нескольких сотен повторений, а человека вообще можно научить сразу, дав ему словесную инструкцию. Такая разница кажется несколько странной - ведь у кошки головной мозг во много раз больше, чем у голубя.)

Нет ничего удивительного в том, что кошки Майерса научались ничем не хуже решать эту задачу и в том случае, когда один глаз животного был закрыт маской. Неудивительно и то, что если обучение такой задаче, как выбор треугольника или квадрата, проводилось лишь с одним открытым глазом - левым, а при проверке левый глаз закрывали и открывали правый, то точность различения оставалась прежней. Нас это не удивляет потому, что мы сами легко можем решить аналогичную задачу. Легкость решения подобных задач понятна, если учесть анатомию зрительной системы. Каждое полушарие получает входные сигналы от обоих глаз. Как мы уже говорили в статье , большая часть клеток в поле 17 тоже имеет входы от обоих глаз. Майерс создал более интересную ситуацию, произведя продольную перерезку хиазмы по средней линии. Таким образом, он перерезал перекрещивающиеся волокна и сохранил в целости неперекрещивающиеся (эта операция требует от хирурга определенного навыка). В результате такой перерезки левый глаз животного оказался соединен только с левым полушарием, а правый - только с правым.

Идея эксперимента заключалась в том, чтобы обучать кошку, используя левый глаз, а на «экзамене» адресовать стимул правому глазу. Если кошка сможет правильно решать задачу, то это будет означать, что необходимая информация передается из левого полушария в правое по единственному известному пути - через мозолистое тело. Итак, Майерс произвел продольную перерезку хиазмы, обучил кошку с одним открытым глазом, а затем устроил проверку, открыв другой глаз и закрыв первый. В этих условиях кошки по-прежнему успешно решали задачу. Наконец, Майерс повторил эксперимент на животных, у которых предварительно были перерезаны и хиазма, и мозолистое тело. На этот раз кошки задачу не решили. Таким образом, Майерс опытным путем установил, что мозолистое тело действительно выполняет какие-то функции (хотя вряд ли можно было думать, что оно существует только для того, чтобы отдельные люди или животные с перерезанной зрительной хиазмой могли решать определенные задачи с использованием одного глаза после обучения с использованием другого).

Изучение физиологии мозолистого тела

Одно из первых нейрофизиологических исследований в этой области было проведено спустя несколько лет после экспериментов Майерса Д. Уиттериджем, работавшим тогда в Эдинбурге. Уиттеридж рассудил, что нет особого смысла в том, чтобы пучки нервных волокон соединяли гомологичные зеркально-симметричные участки полей 17. Действительно, не видно никаких причин для того, чтобы нервная клетка в левом полушарии, связанная с какими-то точками в правой половине поля зрения, соединялась с клеткой в правом полушарии, связанной с симметричным участком левой половины поля зрения. Для проверки своих предположений Уиттеридж перерезал зрительный тракт на правой стороне мозга позади хиазмы и тем самым перекрыл входным сигналам путь в правую затылочную долю; но это, конечно, не исключало передачу туда сигналов из левой затылочной доли через мозолистое тело (рис. 100).

Затем Уиттеридж стал включать световой стимул и регистрировать металлическим электродом электрическую активность с поверхности коры. Он действительно получил в своем опыте ответы, однако они возникали только на внутренней границе поля 17, т. е. в зоне, получающей входные сигналы от длинной, узкой вертикальной полоски в середине поля зрения: при стимуляции маленькими пятнышками света ответы появлялись только тогда, когда свет вспыхивал на вертикальной средней линии или поблизости от нее. Если кору противоположного полушария охлаждали, тем самым временно подавляя ее функцию, ответы прекращались; к этому же приводило и охлаждение мозолистого тела. Тогда стало ясно, что мозолистое тело не может связывать всё поле 17 левого полушария со всем полем 17 правого полушария, а связывает только небольшие участки этих полей, где находятся проекции вертикальной линии в середине поля зрения.

Подобный результат можно было предвидеть исходя из ряда анатомических данных. Только один участок поля 17, расположенный очень близко к границе с полем 18, посылает аксоны через мозолистое тело в другое полушарие, и большая часть их, по-видимому, оканчивается в поле 18 около границы с полем 17. Если мы предположим, что входы в кору от НКТ точно соответствуют контралатеральным частям поля зрения (а именно левое полуполе отображается в коре правого полушария, а правое - в коре левого), то наличие связей между полушариями через мозолистое тело должно приводить в итоге к тому, что каждое полушарие будет получать сигналы от области несколько большей, чем половина поля зрения. Иными словами, за счет связей через мозолистое тело произойдет перекрывание полуполей, проецируемых в два полушария. Именно это мы и обнаружили. С помощью двух электродов, введенных в область коры у границы полей 17 и 18 в каждом из полушарий, нам нередко удавалось регистрировать активность клеток, рецептивные поля которых взаимно перекрывались на несколько угловых градусов.

Т. Визел и я вскоре произвели микроэлектродные отведения непосредственно от той зоны мозолистого тела (в самой задней его части), где имеются волокна, связанные со зрительной системой. Мы нашли, что почти все волокна, которые мы могли активировать зрительными стимулами, отвечали в точности так же, как и обычные нейроны поля 17, т. е. проявляли свойства как простых, так и сложных клеток, избирательно чувствительных к ориентации стимула и обычно отвечавших на стимуляцию обоих глаз. Во всех этих случаях рецептивные поля располагались очень близко к средней вертикали ниже или выше (либо на уровне) точки фиксации, как показано на рис. 101.

Пожалуй, наиболее изящной нейрофизиологической демонстрацией роли мозолистого тела стала работа Дж. Берлукки и Дж. Риццолатти из г. Пизы, выполненная в 1968 году. Перерезав зрительную хиазму по средней линии, они регистрировали ответы в поле 17 вблизи границы с полем 18, отыскивая те клетки, которые могли активироваться бинокулярно. Ясно, что любая бинокулярная клетка этой области в правом полушарии должна получать входные сигналы как прямо от правого глаза (через НКТ), так и от левого глаза и левого полушария через мозолистое тело. Как выяснилось, рецептивное поле каждой бинокулярной клетки захватывало среднюю вертикаль сетчатки, причем та его часть, которая относится к левой половине поля зрения, доставляла информацию от правого глаза, а та, которая заходит в правую половину, - от левого глаза. Другие свойства клеток, исследованные в этом эксперименте, включая ориентационную избирательность, оказались идентичными (рис. 102).

Полученные результаты ясно показали, что мозолистое тело связывает клетки друг с другом таким образом, чтобы их рецептивные поля могли заходить и вправо, и влево от средней вертикали. Таким образом, оно как бы склеивает две половины изображения окружающего мира. Чтобы лучше себе это представить, предположим, что изначально кора нашего мозга образовалась как одно целое, не разделенное на два полушария. В этом случае поле 17 имело бы вид одного непрерывного слоя, на который отображалось бы все зрительное поле. Тогда соседние клетки для реализации таких свойств как, например, чувствительность к движению и ориентационная избирательность, должны были бы иметь, разумеется, сложную систему взаимных связей. Теперь вообразим, что «конструктор» (будь то бог, или, скажем, естественный отбор) решил, что так дальше оставлять нельзя - отныне половина всех клеток должна образовать одно полушарие, а другая половина - другое полушарие.

Что тогда нужно сделать со всем множеством межклеточных связей, если две совокупности клеток должны теперь отодвинуться друг от друга?

По-видимому, можно просто растянуть эти связи, образовав из них часть мозолистого тела. Для того чтобы устранить задержку при передаче сигналов по такому длинному пути (у человека примерно 12-15 сантиметров), нужно увеличить скорость передачи, снабдив волокна миелиновой оболочкой. Разумеется, на самом деле ничего такого в процессе эволюции не происходило; задолго до того, как возникла кора, мозг уже имел два отдельных полушария.

Эксперимент Берлукки и Риццолатти, на мой взгляд, дал одно из наиболее ярких подтверждений удивительной специфичности нейронных связей. Клетка, показанная на рис. 108 (около кончика электрода) и, вероятно, миллион других подобных клеток, соединенных через мозолистое тело, приобретают свою ориентационную избирательность как за счет локальных связей с соседними клетками, так и за счет связей, идущих через мозолистое тело из другого полушария от клеток с такой же ориентационной чувствительностью и сходным расположением рецептивных полей (сказанное относится и к другим свойствам клеток, таким как дирекциональная специфичность, способность реагировать на концы линий, а также сложность).

Каждая из клеток зрительной коры, имеющих связи через мозолистое тело, должна получать входные сигналы от клеток другого полушария с точно такими же свойствами. Мы знаем множество фактов, указывающих на избирательность соединений в нервной системе, но я думаю, что данный пример - наиболее яркий и убедительный.

Рассмотренные выше аксоны клеток зрительной коры составляют лишь небольшую долю всех волокон мозолистого тела. На соматосенсорной коре проводились эксперименты с использованием аксонного транспорта, аналогичные описанным в предыдущих главах опытам с инъекцией радиоактивной аминокислоты в глаз. Их результаты показывают, что мозолистое тело таким же образом связывает те участки коры, которые активируются кожными и суставными рецепторами, расположенными вблизи средней линии тела на туловище и голове, но не связывает корковые проекции конечностей.

Каждая область коры соединяется с несколькими или даже многими другими областями коры того же полушария. Например, первичная зрительная кора связана с полем 18 (зрительной зоной 2), с медиальной височной областью (зоной МТ), со зрительной зоной 4 и еще с одной или двумя областями. Многие участки коры имеют также связи с несколькими областями другого полушария, осуществляемые через мозолистое тело, а в некоторых случаях - через переднюю комиссуру.

Поэтому мы можем рассматривать эти комиссуральные связи просто как особый вид кортико-кортикальных связей. Легко сообразить, что об этом свидетельствует такой простой пример: если я говорю вам, что моя левая рука ощущает холод или что я увидел что-то слева, то я формулирую слова, используя свои корковые речевые зоны, находящиеся в левом полушарии (сказанное, может быть, и не совсем верно, поскольку я левша); информация, поступающая от левой половины поля зрения или от левой руки, передается в мое правое полушарие; потом соответствующие сигналы должны быть переданы через мозолистое тело в речевую зону коры другого полушария, чтобы я мог сказать что-нибудь о своих ощущениях. В серии работ, начатых в начале 1960-х годов, Р. Сперри (сейчас он работает в Калифорнийском технологическом институте) и его сотрудники показали, что человек с перерезанным мозолистым телом (для лечения эпилепсии) теряет способность рассказывать о тех событиях, информация о которых попадает в правое полушарие. Работа с такими испытуемыми стала ценным источником новых сведений о различных функциях коры, включая мышление и сознание. Первые статьи об этом появились в журнале Brain; они чрезвычайно интересны, и их сможет без труда понять всякий, кто прочел настоящую книгу.

Стереоскопическое зрение

Механизм оценки удаленности, основанный на сравнении двух сетчаточных изображений, настолько надежен, что многие люди (если они не психологи и не специалисты по физиологии зрения) даже не подозревают о его существовании. Для того чтобы убедиться в важности этого механизма, попробуйте в течение нескольких минут вести автомобиль или велосипед, играть в теннис или прокатиться на лыжах, закрыв один глаз. Стереоскопы вышли из моды, и вы можете найти их только в антикварных магазинах. Однако большинство читателей смотрели стереоскопические фильмы (когда зрителю приходится надевать специальные очки). Принцип действия как стереоскопа, так и стереоскопических очков основан на использовании механизма стереопсиса.

Изображения на сетчатках двумерны , а между тем мы видим мир трехмерным. Очевидно, что как для человека, так и для животных важна способность определять расстояние до объектов. Точно так же восприятие трехмерной формы предметов означает оценку относительной глубины. Рассмотрим в качестве простого примера круглый предмет. Если он расположен наклонно по отношению к линии взора, его изображение на сетчатках будет эллиптическим, однако обычно мы без труда воспринимаем такой предмет как круглый. Для этого необходима способность к восприятию глубины.

Человек обладает многими механизмами оценки глубины. Некоторые из них столь очевидны, что вряд ли заслуживают упоминания. Тем не менее я их упомяну. Если приблизительно известна величина объекта, например в случае таких объектов, как человек, дерево или кошка, то можно оценить расстояние до него (правда, есть риск ошибиться, если мы столкнемся с карликом, карликовым деревом или львом). Если один предмет расположен впереди другого и частично его заслоняет, то мы воспринимаем передний объект как расположенный ближе. Если взять проекцию параллельных линий, например железнодорожных рельсов, уходящих вдаль, то в проекции они будут сближаться. Это пример перспективы - весьма эффективного показателя глубины.

Выпуклый участок стены кажется более светлым в верхней своей части, если источник света расположен выше (обычно источники света и находятся вверху), а углубление в ее поверхности, если оно освещается сверху, кажется в верхней части более темным. Если же источник света поместить внизу, то выпуклость будет выглядеть как углубление, а углубление - как выпуклость. Важным признаком удаленности служит параллакс движения - кажущееся относительное смещение близких и более далеких предметов, если наблюдатель будет двигать головой влево и вправо или вверх и вниз. Если какой-то твердый предмет поворачивается, пусть даже на небольшой угол, то сразу же выявляется его трехмерная форма. Если мы фокусируем хрусталик нашего глаза на близко расположенном предмете, то более удаленный предмет будет не в фокусе; таким образом, меняя форму хрусталика, т. е. изменяя аккомодацию глаза, мы получаем возможность оценивать удаленность предметов.

Если изменять относительное направление осей обоих глаз, сводя их или разводя (осуществляя конвергенцию или дивергенцию), то можно свести вместе два изображения предмета и удерживать их в этом положении. Таким образом, управляя либо хрусталиком, либо положением глаз, можно оценить удаленность объекта. На этих принципах основаны конструкции ряда дальномеров. За исключением конвергенции и дивергенции, все остальные показатели удаленности, перечисленные до сих пор, являются монокулярными. Наиболее важный механизм восприятия глубины - стереопсис - зависит от совместного использования двух глаз.

При рассматривании любой трехмерной сцены два глаза формируют несколько различные изображения на сетчатке. Вы легко можете в этом убедиться, если будете смотреть прямо вперед и быстро перемещать голову из стороны в сторону примерно на 10 см или же быстро закрывать поочередно то один, то другой глаз. Если перед вами плоский объект, вы не заметите особой разницы. Однако, если сцена включает предметы на разном расстоянии от вас, вы заметите существенные изменения в картине. В процессе стереопсиса мозг сравнивает изображения одной и той же сцены на двух сетчатках и с большой точностью оценивает относительную глубину.

Предположим, наблюдатель фиксирует взором некоторую точку Р. Это утверждение эквивалентно тому, как если мы скажем: глаза направляются таким образом, чтобы изображения точки оказались в центральных ямках обоих глаз (F на рис. 103).

Предположим теперь, что Q - это другая точка пространства, которая кажется наблюдателю расположенной на такой же глубине, что и Р. Пусть Qlh Qr - изображения точки Q на сетчатках левого и правого глаза. В этом случае точки QL и QR называют корреспондирующими точками двух сетчаток. Очевидно, что две точки, совпадающие с центральными ямками сетчаток, будут корреспондирующими. Из геометрических соображений ясно также, что точка Q", оцениваемая наблюдателем как расположенная ближе, чем Q, будет давать на сетчатках две проекции - и Q"R - в некорреспондирующих точках, расположенных дальше друг от друга, чем в том случае, если бы эти точки были корреспондирующими (эта ситуация изображена в правой части рисунка). Точно так же, если рассматривать точку, расположенную дальше от наблюдателя, то окажется, что ее проекции на сетчатках будут расположены ближе друг к другу, чем корреспондирующие точки.

То, что сказано выше о корреспондирующих точках, - это частично определения, а частично утверждения, вытекающие из геометрических соображений. При рассмотрении этого вопроса учитывается также психофизиология восприятия, поскольку наблюдатель субъективно оценивает, дальше или ближе точки Р расположен объект. Введем еще одно определение. Все точки, которые, подобно точке Q (и, конечно, точке Р), воспринимаются как равноудаленные, лежат на гороптере - поверхности, проходящей через точки Р и Q, форма которой отличается как от плоскости, так и от сферы и зависит от нашей способности оценивать удаленность, т. е. от нашего мозга. Расстояния от центральной ямки F до проекций точки Q (QL и QR) близки, но не равны. Если бы они всегда были равны, то линия пересечения гороптера с горизонтальной плоскостью представляла бы собой круг.

Предположим теперь, что мы фиксируем взглядом некоторую точку в пространстве и что в этом пространстве расположены два точечных источника света, которые дают проекцию на каждой сетчатке в виде световой точки, причем эти точки - не корреспондирующие: расстояние между ними несколько больше, чем между корреспондирующими точками. Любое такое отклонение от положения корреспондирующих точек мы будем называть диспаратностью . Если это отклонение в горизонтальном направлении не превышает 2° (0,6 мм на сетчатке), а по вертикали не больше нескольких угловых минут, то мы будем зрительно воспринимать одиночную точку в пространстве, расположенную ближе, чем та, которую мы фиксируем. Если же расстояния между проекциями точки будут не больше, а меньше, чем между корреспондирующими точками, то данная точка будет казаться расположенной дальше, чем точка фиксации. Наконец, в том случае, если вертикальное отклонение будет превышать несколько угловых минут или же горизонтальное будет больше 2°, то мы увидим две отдельные точки, которые, возможно, покажутся расположенными дальше или ближе точки фиксации. Эти экспериментальные результаты иллюстрируют основной принцип стереовосприятия, впервые сформулированный в 1838 году сэром Ч. Уитстоном (который также изобрел прибор, известный в электротехнике как «мостик Уитстона»).

Кажется почти невероятным, что до этого открытия ни один человек, по-видимому, не отдавал себе отчета в том, что наличие едва заметных различий в изображениях, проецируемых на сетчатки двух глаз, может приводить к отчетливому впечатлению глубины. Такой стереоэффект может продемонстрировать за несколько минут любой человек, способный произвольно сводить или разводить оси своих глаз, или же тот, у кого есть карандаш, кусок бумаги и несколько небольших зеркал или призм. Непонятно, как прошли мимо этого открытия Евклид, Архимед и Ньютон. В своей статье Уитстон отмечает, что Леонардо да Винчи был очень близок к открытию этого принципа. Леонардо указывал, что шар, расположенный перед какой-либо пространственной сценой, виден каждым глазом по-разному - левым глазом мы немного дальше видим его левую сторону, а правым глазом - правую. Далее Уитстон отмечает, что если бы вместо шара Леонардо выбрал куб, то он, безусловно, заметил бы, что его проекции для разных глаз различны. После этого он мог бы, как и Уитстон, заинтересоваться тем, что будет, если специально спроецировать два подобных изображения на сетчатки двух глаз.

Важным физиологическим фактом является то, что ощущение глубины (т. е. возможность «непосредственно» видеть, дальше или ближе точки фиксации расположен тот или иной объект) возникает в тех случаях, когда два сетчаточных изображения несколько смещены относительно друг друга в горизонтальном направлении - раздвинуты или, наоборот, сближены (если только это смещение не превышает примерно 2°, а вертикальное смещение близко к нулю). Это, разумеется, соответствует геометрическим соотношениям: если по отношению к некоторой точке отсчета расстояния объект расположен ближе или дальше, то его проекции на сетчатках будут раздвинуты или сближены по горизонтали, тогда как существенного вертикального смещения изображений не произойдет.


На этом и основано действие стереоскопа, изобретенного Уитстоном. Стереоскоп в течение примерно полувека был настолько популярен, что имелся чуть ли не в каждом доме. Тот же принцип лежит в основе и стереокино, которое мы сейчас смотрим, используя для этого специальные поляроидные очки. В первоначальной конструкции стереоскопа наблюдатель рассматривал два изображения, помещенные в ящик, с помощью двух зеркал, которые были расположены таким образом, что каждый глаз видел только одно изображение. Для удобства теперь часто используют призмы и фокусирующие линзы. Два изображения идентичны во всем, кроме небольших горизонтальных смещений, которые и создают впечатление глубины. Любой может изготовить фотографию, пригодную для использования в стереоскопе, если выберет какой-либо неподвижный объект (или сцену), сделает снимок, а затем сдвинет фотоаппарат на 5 сантиметров вправо или влево и сделает второй снимок.

Не все обладают способностью воспринимать глубину с помощью стереоскопа. Вы сами можете легко проверить свой стереопсис, если воспользуетесь стереопарами, приведенными на рис. 105 и 106.

Если у вас есть стереоскоп, вы можете сделать копии изображенных здесь стереопар и вставить их в стереоскоп. Вы можете также поместить тонкий кусок картона перпендикулярно между двумя изображениями из одной стереопары и попытаться смотреть каждым глазом на свое изображение, установив глаза параллельно, как если бы вы смотрели вдаль. Можно также научиться сводить и разводить глаза с помощью пальца, поместив его между глазами и стереопарой и передвигая вперед или назад, пока изображения не сольются, после чего (это самое трудное) вы сможете рассматривать слитое изображение, стараясь, чтобы оно не разделилось на два. Если у вас это получится, то кажущиеся отношения глубины будут противоположны тем, которые воспринимаются при использовании стереоскопа.

Даже если вам не удастся повторить опыт с восприятием глубины - из-за того ли, что у вас нет стереоскопа, или потому, что вы не можете произвольно сводить и разводить оси глаз, - вы все-таки сможете понять суть дела, хотя не получите удовольствия от стереоэффекта.

В верхней стереопаре на рис. 105 в двух квадратных рамках имеется по небольшому кружку, один из которых смещен немного влево от центра, а другой - немного вправо. Если рассматривать эту стереопару двумя глазами, используя стереоскоп или иной метод совмещения изображений, то вы увидите кружок не в плоскости листа, а впереди него на расстоянии около 2,5 см. Если так же рассматривать нижнюю стереопару на рис. 105, то кружок будет виден позади плоскости листа. Вы воспринимаете положение кружка таким образом потому, что на сетчатки ваших глаз попадает в точности такая же информация, как если бы кружок действительно находился впереди или позади плоскости рамки.

В 1960 году Бела Юлеш из фирмы Bell Telephone Laboratories придумал весьма полезную и изящную методику для демонстрации стереоэффекта. Изображение, представленное на рис. 107, на первый взгляд кажется однородной случайной мозаикой из маленьких треугольничков.

Так оно и есть, за исключением того, что в центральной части имеется скрытый треугольник большего размера. Если вы будете рассматривать это изображение с помощью двух кусочков цветного целлофана, помещенных перед глазами, - красного перед одним глазом и зеленого перед другим, то вы должны увидеть в центре треугольник, выступающий из плоскости листа вперед, как в предыдущем случае с маленьким кружком на стереопарах. (Быть может, в первый раз вам придется смотреть минуту или около этого, пока не возникнет стереоэффект.) Если поменять куски целлофана местами, произойдет инверсия глубины. Ценность этих стереопар Юлеша заключается в том, что если у вас нарушено стереовосприятие, то вы не увидите треугольника впереди или позади окружающего фона.

Подводя итоги, можно сказать, что наша способность ощущать стереоэффект зависит от пяти условий:

1. Имеется много косвенных признаков глубины - частичное заслонение одних предметов другими, параллакс движения, вращение предмета, относительные размеры, отбрасывание теней, перспектива. Однако наиболее мощным механизмом является стереопсис.

2. Если мы фиксируем взглядом какую-то точку в пространстве, то проекции этой точки попадают в центральные ямки обеих сетчаток. Любая точка, которая оценивается как расположенная на том же расстоянии от глаз, что и точка фиксации, образует две проекции в корреспондирующих точках сетчаток.

3. Стереоэффект определяется простым геометрическим фактом - если некоторый объект находится ближе точки фиксации, то две его проекции на сетчатках оказываются дальше друг от друга, чем корреспондирующие точки.

4. Главный вывод, основанный на результатах экспериментов с испытуемыми, заключается в следующем: объект, проекции которого на сетчатках правого и левого глаза попадают на корреспондирующие точки, воспринимается как расположенный на том же расстоянии от глаз, что и точка фиксации; если проекции этого объекта раздвинуты по сравнению с корреспондирующими точками, объект кажется расположенным ближе точки фиксации; если же они, наоборот, сближены, объект кажется расположенным дальше точки фиксации.

5. При горизонтальном смещении проекций больше чем на 2° или вертикальном смещении больше нескольких угловых минут возникает двоение.

Физиология стереоскопического зрения

Если мы хотим знать, каковы мозговые механизмы стереопсиса, то проще всего начать с вопроса: существуют ли нейроны, реакции которых специфически определяются относительным горизонтальным смещением изображений на сетчатках двух глаз? Посмотрим сначала, как отвечают клетки нижних уровней зрительной системы при одновременной стимуляции обоих глаз. Мы должны начать с нейронов поля 17 или более высокого уровня, поскольку ганглиозные клетки сетчатки явно монокулярные, а клетки наружного коленчатого тела, в котором входы от правого и левого глаз распределены по разным слоям, тоже можно считать монокулярными - они отвечают на стимуляцию либо одного глаза, либо другого, но не обоих одновременно. В поле 17 примерно половину нейронов составляют бинокулярные клетки, отвечающие на стимуляцию обоих глаз.

При тщательном тестировании выясняется, что ответы этих клеток, по-видимому, мало зависят от относительного положения проекций стимулов на сетчатках двух глаз. Рассмотрим типичную сложную клетку, которая отвечает непрерывным разрядом на движение стимульной полосы через ее рецептивное поле в том или другом глазу. При одновременной стимуляции обоих глаз частота разрядов этой клетки выше, чем при стимуляции одного глаза, но обычно для ответа такой клетки несущественно, попадают ли в какой-то момент проекции стимула точно в одни и те же участки двух рецептивных полей.

Наилучший ответ регистрируется тогда, когда эти проекции входят и выходят из соответствующих рецептивных полей двух глаз примерно в одно время; однако не столь важно, которая из проекций немного опережает другую. На рис. 108 показана характерная кривая зависимости ответа (например, общего числа импульсов в ответе за одно прохождение стимула через рецептивное поле) от разницы в положении стимула на обеих сетчатках. Эта кривая очень близка к горизонтальной прямой, из чего ясно, что относительное положение стимулов на двух сетчатках не очень существенно.

Клетка такого типа будет хорошо реагировать на линию надлежащей ориентации независимо от ее удаленности - расстояние до линии может быть больше, равно или меньше расстояния до точки> фиксируемой взором.

По сравнению с этой клеткой нейроны, ответы которых представлены на рис. 109 и 110, весьма чувствительны к относительному положению двух стимулов на двух сетчатках, т. е. чувствительны к глубине.


Первый нейрон (рис. 109) лучше всего отвечает в том случае, если стимулы попадают точно на корреспондирующие участки двух сетчаток. Величина несовмещения стимулов по горизонтали (т. е. диспаратность), при которой клетка уже перестает реагировать, составляет некоторую долю ширины ее рецептивного поля. Поэтому клетка отвечает тогда и только тогда, когда объект находится примерно на таком же расстоянии от глаз, как и точка фиксации. Второй нейрон (рис. 110) отвечает только тогда, когда объект расположен дальше точки фиксации. Имеются также клетки, отвечающие только тогда, когда стимул расположен ближе этой точки. При изменении степени диспаратности нейроны двух последних типов, называемые дальними клетками и ближними клетками , очень резко изменяют интенсивность своих ответов в точке нулевой диспаратности или поблизости он нее. Нейроны всех трех типов (клетки, настроенные на диспаратность ) были обнаружены в поле 17 обезьяны.

Пока не совсем ясно, насколько часто они там встречаются, расположены ли они в определенных слоях коры и находятся ли в определенных пространственных отношениях к колонкам глазодоминантности. Эти клетки весьма чувствительны к расстоянию объекта от глаз, которое кодируется в виде относительного положения соответствующих стимулов на двух сетчатках. Еще одна особенность этих клеток - то, что они не отвечают на стимуляцию только одного глаза или же отвечают, но очень слабо. Все эти клетки обладают общим свойством ориентационной избирательности; насколько нам известно, они сходны с обычными сложными клетками верхних слоев коры, но обладают еще дополнительным свойством - чувствительностью к глубине. Кроме того, эти клетки хорошо реагируют на движущиеся стимулы, а иногда и на концы линий.

Дж. Поджо из медицинской школы Джонса Гопкинса регистрировал ответы таких клеток в поле 17 бодрствующей обезьяны с вживленными электродами, которая была предварительно обучена фиксировать взглядом определенный объект. У наркотизированных обезьян такие клетки тоже выявлялись в коре, но редко встречались в поле 17 и очень часто - в поле 18. Я был бы крайне удивлен, если бы оказалось, что животные и человек могут стереоскопически оценивать расстояния до объектов с помощью только трех описанных выше типов клеток - настроенных на нулевую диспаратность, «ближних» и «дальних». Я бы скорее ожидал найти полный набор клеток для всех возможных глубин. У бодрствующих обезьян Поджо встречал также узконастроенные клетки, которые лучше всего реагировали не на нулевую диспаратность, а на небольшие отклонения от нее; по-видимому, в коре могут быть специфические нейроны для всех ступеней диспаратности. Хотя мы до сих пор не знаем, как именно мозг «реконструирует» сцену, включающую множество разноудаленных объектов (что бы мы ни понимали под словом «реконструкция»), клетки вроде описанных выше, вероятно, участвуют в первых этапах этого процесса.

Некоторые проблемы, связанные со стереоскопическим зрением

За время изучения стереопсиса психофизики столкнулись с целым рядом проблем. Оказалось, что обработка некоторых бинокулярных стимулов происходит в зрительной системе совершенно непонятными способами. Я мог бы привести много примеров такого рода, но ограничусь лишь двумя.

На примере стереопар, приведенных на рис. 105, мы видели, что смещение двух идентичных изображений (в данном случае кружков) по направлению друг к другу приводит к ощущению большей близости, а по направлению друг от друга - к ощущению большей удаленности. Предположим теперь, что мы делаем одновременно обе эти операции, для чего помещаем в каждую рамку по два кружка, расположенных друг около друга (рис. 111).

Очевидно, что рассматривание такой стереопары могло бы привести к восприятию двух кружков - одного ближе, а другого дальше плоскости фиксации. Однако можно предположить и другой вариант: мы увидим просто два кружка, лежащие рядом в плоскости фиксации. Дело в том, что этим двум пространственным ситуациям соответствуют одинаковые изображения на сетчатках. В действительности данная пара стимулов может быть воспринята только как два кружка в плоскости фиксации, в чем легко убедиться, если любым способом достичь слияния квадратных рамок на рис. 111.

Точно так же можно представить себе ситуацию, когда мы рассматриваем две цепочки из знаков х, скажем, по шесть знаков в цепочке. Если рассматривать их в стереоскоп, то в принципе можно воспринять любую из ряда возможных конфигураций в зависимости от того, какой знак х из левой цепочки сольется с определенным знаком х в правой цепочке. На самом же деле , если мы будем рассматривать такую стереопару в стереоскоп (или иным способом, создающим стереоэффект), то всегда увидим шесть знаков х в плоскости фиксации. Мы до сих пор не знаем, как мозг разрешает эту неоднозначность и выбирает простейшую из всех возможных комбинаций. Из-за такого рода неоднозначностей трудно даже вообразить, как нам удается воспринимать объемной сцену, включающую множество ветвей разной величины, находящихся на разных расстояниях от нас. Правда, физиологические данные подсказывают, что задача, возможно, не столь трудна, так как разные ветви скорее всего будут иметь разную ориентацию, а мы уже знаем, что клетки, участвующие в стереопсисе, всегда бывают ориентационно-избирательными.

Второй пример непредсказуемости бинокулярных эффектов, имеющий отношение к стереопсису, - это так называемая борьба полей зрения, о которой мы упоминаем также в разделе о косоглазии (гл. 9). Если на сетчатках правого и левого глаза создаются очень сильно различающиеся изображения, то часто одно из них перестает восприниматься. Если вы будете смотреть левым глазом на решетку из вертикальных линий, а правым глазом - на решетку из горизонтальных линий (рис. 112; можно пользоваться стереоскопом или конвергенцией глаз), то, казалось бы, следует ожидать, что вы увидите сетку из пересекающихся линий.

Однако в действительности почти невозможно увидеть оба набора линий одновременно. Виден или тот или другой, причем каждый из них - лишь в течение нескольких секунд, после чего он исчезает и появляется другой. Иногда можно также увидеть как бы мозаику из двух этих изображений, в которой отдельные однороднее участки будут перемещаться, сливаться или разделяться, а ориентация линий в них будет меняться (см. рис. 112, внизу). По какой-то причине нервная система не может воспринимать столь разные стимулы одновременно в одном и том же участке поля зрения, и она подавляет переработку одного из них.

Слово «подавлять » мы используем здесь просто как иное описание того же феномена: на самом деле мы не знаем, как осуществляется такое подавление и на каком уровне центральной нервной системы оно происходит. Мне думается, мозаичный характер воспринимаемого образа при борьбе полей зрения позволяет предположить, что «принятие решений» в этом процессе происходит на достаточно ранних этапах переработки зрительной информации, возможно, в поле 17 или 18. (Я рад, что мне не нужно защищать это предположение.)

Феномен борьбы полей зрения означает , что в тех случаях, когда зрительная система не может объединить изображения на двух сетчатках (в плоскую картину, если изображения одинаковы, или в трехмерную сцену, если имеется лишь небольшая горизонтальная диспаратность), она просто отвергает один из образов - либо полностью, когда, например, мы смотрим в микроскоп, держа второй глаз открытым, либо частично или на время, как в примере, описанном выше. В ситуации с микроскопом существенную роль играет внимание, но нейронные механизмы, лежащие в основе такого переключения внимания, тоже неизвестны.

Еще один пример борьбы полей зрения вы можете наблюдать, если просто будете рассматривать какую-нибудь многоцветную сцену или картину через очки с красным и зеленым светофильтрами. Впечатления разных наблюдателей в этом случае могут быть весьма различными, однако большинство людей (в том числе и я) отмечает переходы от общего красноватого тона к зеленоватому и обратно, но без желтого цвета, который получается при обычном смешении красного света с зеленым.

Стереослепота


Если человек слеп на один глаз, то очевидно, что он не будет обладать стереоскопическим зрением.
Однако его нет и у некоторой части людей, зрение которых в остальных отношениях нормально. Удивительно то, что доля таких людей не слишком мала. Так, если показать стереопары вроде тех, что приводились на рис. 105 и 106, сотне студентов-испытуемых (применяя поляроиды и поляризованный свет), то обычно оказывается, что четыре или пять из них не могут достичь стереоэффекта.

Нередко это удивляет их самих, так как в повседневных условиях они не испытывают никаких неудобств. Последнее может показаться странным любому, кто ради эксперимента пытался управлять автомобилем, закрыв один глаз. По-видимому, отсутствие стереопсиса достаточно хорошо компенсируется использованием других признаков глубины, таких как параллакс движения, перспектива, частичное закрытие одних предметов другими и т. п. В главе 9 мы рассмотрим случаи врожденного косоглазия, когда глаза длительное время работают несогласованно. Это может приводить к нарушению связей в коре, обеспечивающих бинокулярное взаимодействие, и в результате - к утрате стереопсиса. Косоглазие встречается не так уж редко, и даже слабая его степень, которая может остаться незамеченной, в некоторых случаях, вероятно, бывает причиной стереослепоты. В других же случаях нарушение стереопсиса, подобно цветовой слепоте, может быть наследственным.

Поскольку в этой главе шла речь и о мозолистом теле, и о стереоскопическом зрении, я воспользуюсь случаем сказать кое-что о связи этих двух вещей. Попробуйте задать себе вопрос: каких нарушений стереопсиса можно ожидать у человека с перерезанным мозолистым телом? Ответ на этот вопрос ясен из схемы, приведенной на рис. 113.

Если человек фиксирует взглядом точку Р, то проекции точки Q, расположенной ближе к глазам в пределах острого угла FPF, - QL и QR - окажутся в левом и в правом глазу по разные стороны от центральной ямки. Соответственно проекция Ql передает информацию в левое полушарие, а проекция Qr - в правое полушарие. Для того чтобы увидеть, что точка Q ближе, чем Р (т. е. получить стереоэффект), нужно объединить информацию левого и правого полушарий. Но единственный способ сделать это - передать информацию по мозолистому телу. Если же путь через мозолистое тело разрушен, человек окажется стереослепым в закрашенной на рисунке области. В 1970 году Д. Митчелл и К. Блейкмор из Калифорнийского университета в Беркли исследовали стереоскопическое зрение у одного человека с перерезанным мозолистым телом и получили в точности предсказанный выше результат.

Второй вопрос, тесно связанный с первым, состоит в том, какое нарушение стереопсиса произойдет, если перерезать по средней линии зрительную хиазму (что проделал Р. Майерс на кошках). Результат здесь будет в определенном смысле противоположным. Из рис. 114 должно быть ясно, что в этом случае каждый глаз станет слепым в отношении стимулов, падающих на носовую область сетчатки, т. е. исходящих из височной части поля зрения.

Поэтому стереопсиса не будет в области пространства, окрашенной светлее, где он в норме имеется. Боковые зоны за пределами этой области вообще доступны только для одного глаза, так что стереопсис здесь отсутствует и в нормальных условиях, а после перерезки хиазмы они будут зонами слепоты (на рисунке это показано более темным цветом). В области позади точки фиксации, где перекрываются височные части полей зрения, ставшие теперь невидимыми, тоже наступит слепота.

Однако в зоне ближе точки фиксации сохранившиеся полуполя обоих глаз перекрываются, так что здесь должен сохраниться стереопсис, если только не повреждено мозолистое тело. К. Блейкмор нашел все-таки больного с полной пререзкой хиазмы по средней линии (этот больной, будучи ребенком, получил перелом черепа при езде на велосипеде, что, по-видимому, привело к продольному разрыву хиазмы). При проверке у него была обнаружена именно та комбинация дефектов зрения, которую мы только что гипотетически описали.

Статья из книги: .

Бинокулярное зрение — это нормальный характер зрения человека, оно позволяет нам воспринимать окружающий мир объемным. Мы можем оценить величину и форму предмета, его рельеф, расстояние до объекта, их соотношение между собой. Стереоскопическое зрение — это одно из высших проявлений бинокулярности, позволяющее видеть трехмерно.

Бинокулярность позволяет нам сформировать видимые объекты в единый зрительный образ. Мы видим картинку левым и правым глазом отдельно.

В этой статье

При нормальном зрении изображение попадает на одинаковые (корреспондирующие) участки сетчатки обоих глаз, а затем формируется в единое целое уже в коре головного мозга, что называется фузионным рефлексом. Это рефлекторный механизм бинокулярного зрения, отвечающий за слияние двух картинок в одну. При нарушении бинокулярности изображение проецируется на несовпадающие точки, вследствие чего мозг не может соединить их в одну. Возникает диплопия (двоение в глазах). В этом легко убедиться, если при взгляде на какой-либо предмет легонько надавить на нижнее или верхнее веко, в глазах сразу начнет двоиться.

Развитие стереоскопического зрения у ребенка

Ребенок в течение нескольких недель после рождения еще не в состоянии фиксировать взгляд на предмете, так как его глазные мышцы рассогласованы и не могут совершать синхронных движений. Из-за этого мы наблюдаем младенческое косоглазие. Характер зрения после рождения монокулярный — малыш видит только одним глазом, а затем монокулярный альтернирующий — то левым, то правым глазом. А вот к двум месяцам жизни должен сформироваться рефлекс фиксации предмета. В этот период световые возбуждения уже передаются в кору головного мозга, возникает связь между желтыми пятнами сетчатки и осуществляется слияние двух изображений в одно — срабатывает фузионный рефлекс, без которого невозможно стереоскопическое бинокулярное зрение. Помимо этого, при нормальном развитии должна появиться конвергенция (сведение зрительных осей для фиксации расположенных вблизи предметов). Это подтверждение того, что развивается аккомодация — способность глаз к видению на разных расстояниях.

В два-три месяца малыш активно осваивает ближнее пространство — важный этап для формирования бинокулярного зрения. В это время он еще не обладает зрением «стерео» и видит объекты только в двух измерениях — в ширину и высоту, а представление о глубине может получить только путем осязания. Так он получает первое представление об объемности предметов.
В 4-5 месяцев у ребенка происходит динамичное развитие хватательного рефлекса. Малыш определяет направление движения, но оценить расстояние ему еще трудно, как и объем: он пытается схватить рукой солнечные зайчики, блики от источников освещения, движущиеся тени.

После шести месяцев наступает этап активного освоения дальнего пространства, когда малыш начинает активно ползать. При этом ребенок уже лучше оценивает расстояние до объекта, к которому он направляется, наступает понимание того, что с края кровати можно упасть. Он способен дотянуться до разнообразных вещей, оценить их размер, рельеф. Это период бурного развития стереоскопического и в целом бинокулярного зрения. В это время необходимо давать ему для игр предметы разной формы, из различных материалов, наполнить детскую различными геометрическими игрушками: кубами, шарами, которые можно катать.

Исследуя различные по форме и материалу объекты, малыш формирует стереоскопическое зрение, свое представление об окружающем мире. Распространенная игра — катание мяча между взрослым и ребенком — отличный пример того, как он учится оценивать расстояние — один из важных признаков бинокулярного зрения. Полностью формирование стереозрения завершается примерно к восьми годам жизни.

Косоглазие — причина потери стереоскопического зрения

Косоглазие часто встречается у детей и свидетельствует о явном нарушении стереозрения. Профессор Р. Заксенвегер в результате многолетних наблюдений вывел два термина:

  • «стереоамавроз» — полное отсутствие стереоскопичности;
  • «стереоамблиопия» — неполноценное развитие стереоскопического зрения.

Возникновение у ребенка косоглазия разрушает его бинокулярное и стереоскопическое зрение. При этом нужно отметить, что восстановить стереозрение удается лишь у той части детей с содружественным косоглазием, при врожденном или рано появившемся недуге вернуть полноценное объемное видение не удается.
Восстановление стереоскопичности проводится на последнем этапе лечения косоглазия, когда развиты фузионные рефлексы и нормальное плоскостное бинокулярное зрение. При этом конечные результаты зависят от остроты видения обоих глаз, разницы между ними в диоптриях, угла косоглазия. Также на предел порога глубинного зрения влияют сроки возникновения косоглазия (важно, в какой стадии формирования находился зрительный процесс) и степень анизейконии — нарушения, при котром на сетчатках обоих глаз формируются разные по величине изображения. Если эта разница составляет более 5%, то качество глубинного зрения очень низкое.

Вот почему так важно внимательно наблюдать за процессом развития зрительного механизма ребенка, знать о том, что он должен уметь делать в определенный период жизни. Развившееся косоглазие, амблиопия могут привести к полной потере бинокулярного зрения, в том числе и стереофункции. Чаще всего этот недуг развивается в период до трех лет. К тому же как косоглазие может быть причиной амблиопии, так и наоборот, ее следствием. При амблиопии (синдром «ленивого глаза») ребенок наблюдает мир только при помощи одного глаза, имея монокулярность. Естественно, что объемное зрение при этом отсутствует. Эти патологии опасны также тем, что при запущенном состоянии функции бинокулярности могут полностью атрофироваться.

Чем мешает отсутствие полноценного бинокулярного и стереоскопического зрения?

Отсутствие стереозрения ограничивает возможность работы в очень многих сферах, а также грозит опасными последствиями и для сотрудника, и для окружающих. Вот несколько примеров тому.
Медицинский работник. Представьте хирурга, выполняющего полостную операцию. Если он не способен оценить величину органа, который он оперирует, а также расстояние до него? Стоматолога, который промахивается мимо зуба? При отсутствии нормального бинокулярного и тем более стереозрения в медицине запрещено работать в некоторых специальностях.

Спортсмен во многих дисциплинах. Как правило, почти во всех видах спорта требуется абсолютно идеальное стереоскопическое бинокулярное зрение. Спортсмену нужно постоянно оценивать расстояние и до других игроков, мяча, шайбы волана, высоту планки при прыжке, а также величину предметов, чтобы визуально оценить, на каком расстоянии они находятся. Не понадобится хорошая бинокулярность, например, в шахматах, в основном же результаты в спорте зависят от нее.

Водители различных видов транспорта, а также летчики, военные, проходят обязательную проверку бинокулярного зрения перед поступлением в военное училище и приемом на работу. Водитель, который не может оценить расстояние до других транспортных средств, — потенциальный источник опасности на дороге. Отсутствие стереофункции зрения мешает работать также еще во множестве других профессий: видеооператор, охотник, художник и др.

Родителям необходимо с самого рождения ребенка внимательно следить за развитием его зрительных функций. непроходящее младенческое косоглазие — уже повод срочно посетить офтальмолога . Кроме того, не стоит игнорировать обязательные проверки зрения на определенных этапах развития малыша: 1 месяц, 3 месяца, полгода и год. Врач обнаружит нарушения, если они присутствуют, и назначит соответствующую терапию или лечение. Таким образом, время не будет потеряно. Зачастую именно запущенные заболевания становятся причиной утраты зрительных функций.