Почему звук воде распространяется быстрее. Как звук распространяется в пространстве? Дальность распространения звуковых волн

Мы воспринимаем звуки, находясь на расстоянии от их источников. Обычно звук доходит до нас по воздуху. Воздух является упругой средой, передающей звук.

Если между источником и приёмником удалить звукопередающую среду, то звук распространяться не будет и, следовательно, приёмник не воспримет его. Продемонстрируем это на опыте.

Поместим под колокол воздушного насоса часы-будильник (рис. 80). Пока в колоколе находится воздух, звук звонка слышен ясно. При откачивании воздуха из-под колокола звук постепенно слабеет и, наконец, становится неслышимым. Без передающей среды колебания тарелки звонка не могут распространяться, и звук не доходит до нашего уха. Впустим под колокол воздух и снова услышим звон.

Рис. 80. Опыт, доказывающий, что в пространстве, где нет вещественной среды, звук не распространяется

Хорошо проводят звуки упругие вещества, например металлы, древесина, жидкости, газы.

Положим на один конец деревянной доски карманные часы, а сами отойдём к другому концу. Приложив ухо к доске, услышим ход часов.

Привяжем к металлической ложке бечёвку. Конец бечёвки приложим к уху. Ударяя по ложке, услышим сильный звук. Ещё более сильный звук услышим, если бечёвку заменим проволокой.

Мягкие и пористые тела - плохие проводники звука. Чтобы защитить какое-нибудь помещение от проникновения посторонних звуков, стены, пол и потолок прокладывают прослойками из звукопоглощающих материалов. В качестве прослоек используют войлок, прессованную пробку, пористые камни, различные синтетические материалы (например, пенопласт), изготовленные на основе вспененных полимеров. Звук в таких прослойках быстро затухает.

Жидкости хорошо проводят звук. Рыбы, например, хорошо слышат шаги и голоса на берегу, это известно опытным рыболовам.

Итак, звук распространяется в любой упругой среде - твёрдой, жидкой и газообразной, но не может распространяться в пространстве, где нет вещества.

Колебания источника создают в окружающей его среде упругую волну звуковой частоты. Волна, достигая уха, воздействует на барабанную перепонку, заставляя её колебаться с частотой, соответствующей частоте источника звука. Дрожания барабанной перепонки передаются посредством системы косточек окончаниям слухового нерва, раздражают их и тем вызывают ощущение звука.

Напомним, что в газах и жидкостях могут существовать только продольные упругие волны. Звук в воздухе, например, передаётся продольными волнами, т. е. чередующимися сгущениями и разрежениями воздуха, идущими от источника звука.

Звуковая волна, как и любые другие механические волны, распространяется в пространстве не мгновенно, а с определённой скоростью. В этом можно убедиться, например, наблюдая издалека за стрельбой из ружья. Сначала видим огонь и дым, а потом через некоторое время слышим звук выстрела. Дым появляется в то же время, когда происходит первое звуковое колебание. Измерив промежуток времени t между моментом возникновения звука (момент появления дыма) и моментом, когда он доходит до уха, можно определить скорость распространения звука:

Измерения показывают, что скорость звука в воздухе при 0 °С и нормальном атмосферном давлении равна 332 м/с.

Скорость звука в газах тем больше, чем выше их температура. Например, при 20 °С скорость звука в воздухе равна 343 м/с, при 60 °С - 366 м/с, при 100 °С - 387 м/с. Объясняется это тем, что с повышением температуры возрастает упругость газов, а чем больше упругие силы, возникающие в среде при её деформации, тем больше подвижность частиц и тем быстрее передаются колебания от одной точки к другой.

Скорость звука зависит также от свойств среды, в которой распространяется звук. Например, при 0 °С скорость звука в водороде равна 1284 м/с, а в углекислом газе - 259 м/с, так как молекулы водорода менее массивны и менее инертны.

В настоящее время скорость звука может быть измерена в любой среде.

Молекулы в жидкостях и твёрдых телах расположены ближе друг к другу и сильнее взаимодействуют, чем молекулы газов. Поэтому скорость звука в жидких и твёрдых средах больше, чем в газообразных.

Поскольку звук - это волна, то для определения скорости звука, помимо формулы V = s/t, можно пользоваться известными вам формулами: V = λ/T и V = vλ. При решении задач скорость звука в воздухе обычно считают равной 340 м/с.

Вопросы

  1. С какой целью ставят опыт, изображённый на рисунке 80? Опишите, как этот опыт проводится и какой вывод из него следует.
  2. Может ли звук распространяться в газах, жидкостях, твёрдых телах? Ответы подтвердите примерами.
  3. Какие тела лучше проводят звук - упругие или пористые? Приведите примеры упругих и пористых тел.
  4. Какую волну - продольную или поперечную - представляет собой звук, распространяющийся в воздухе; в воде?
  5. Приведите пример, показывающий, что звуковая волна распространяется не мгновенно, а с определённой скоростью.

Упражнение 30

  1. Может ли звук сильного взрыва на Луне быть слышен на Земле? Ответ обоснуйте.
  2. Если к каждому из концов нити привязать по одной половинке мыльницы, то с помощью такого телефона можно переговариваться даже шёпотом, находясь в разных комнатах. Объясните явление.
  3. Определите скорость звука в воде, если источник, колеблющийся с периодом 0,002 с, возбуждает в воде волны длиной 2,9 м.
  4. Определите длину звуковой волны частотой 725 Гц в воздухе, в воде и в стекле.
  5. По одному концу длинной металлической трубы один раз ударили молотком. Будет ли звук от удара распространяться ко второму концу трубы по металлу; по воздуху внутри трубы? Сколько ударов услышит человек, стоящий у другого конца трубы?
  6. Наблюдатель, стоящий около прямолинейного участка железной дороги, увидел пар над свистком идущего вдали паровоза. Через 2 с после появления пара он услышал звук свистка, а через 34 с паровоз прошёл мимо наблюдателя. Определите скорость движения паровоза.

Гидроакустика (от греч. hydor - вода, akusticoc - слуховой) - наука о явлениях, происходящих в водной среде и связанных с распространением, излучением и приемом акустических волн. Она включает вопросы разработки и создания гидроакустических средств, предназначенных для использования в водной среде.

История развития

Гидроакустика - быстро развивающаяся в настоящее время наука, и имеющая, несомненно, большое будущее. Ее появлению предшествовал долгий путь развития теоретической и прикладной акустики. Первые сведения о проявлении интереса человека к распространению звука в воде мы находим в записках известного ученого эпохи Возрождения Леонардо да Винчи :

Первые измерения расстояния посредством звука произвел русский исследователь академик Я. Д. Захаров. 30 июня 1804 г. он совершил полет на воздушном шаре с научной целью и в этом полете воспользовался отражением звука от поверхности земли для определения высоты полета. Находясь в корзине шара, он громко крикнул в рупор, направленный вниз. Через 10 сек пришло отчетливо слышное эхо. Отсюда Захаров заключил, что высота шара над землей равнялась приблизительно 5 х 334 = 1670 м. Этот способ лег в основу радио и гидролокации.

Наряду с разработкой теоретических вопросов в России проводились практические исследования явлений распространения звуков в море. Адмирал С. О. Макаров в 1881 - 1882 гг. предложил использовать для передачи информации о скорости течения под водой прибор, названный флюктометром. Этим было положено начало развитию новой отрасли науки и техники - гидроакустической телеметрии .

Схема гидрофонической станции Балтийского завода обр.1907г.: 1 - водяной насос; 2 - трубопровод; 3 - регулятор давления; 4 - электромагнитный гидравлический затвор (телеграфный клапан); 5 - телеграфный ключ; 6 - гидравлический мембранный излучатель; 7 - борт корабля; 8 - танк с водой; 9 - герметизированный микрофон

В 1890-х гг. на Балтийском судостроительном заводе по инициативе капитана 2 ранга М. Н. Беклемишева начали работы по разработке приборов гидроакустической связи. Первые испытания гидроакустического излучателя для звукоподводной связи проводились в конце XIX в. в опытовом бассейне в Галерной гавани в Петербурге. Излучаемые им колебания хорошо прослушивались за 7 верст на Невском плавучем маяке. В результате исследований в 1905г. создали первый прибор гидроакустической связи, в котором роль передающего устройства играла специальная подводная сирена, управляемая телеграфным ключом, а приемником сигналов служил угольный микрофон, закрепленный изнутри на корпусе корабля. Сигналы регистрировались аппаратом Морзе и на слух. Позднее сирену заменили излучателем мембранного типа. Эффективность прибора, названного гидрофонической станцией, значительно повысилась. Морские испытания новой станции состоялись в марте 1908г. на Черном море, где дальность уверенного приема сигналов превышала 10км.

Первые серийные станции звукоподводной связи конструкции Балтийского завода в 1909-1910 гг. установили на подводных лодках «Карп» , «Пескарь» , «Стерлядь» , «Макрель » и «Окунь » . При установке станций на подводных лодках в целях уменьшения помех приемник располагался в специальном обтекателе, буксируемом за кормой на кабель-тросе. К подобному решению англичане пришли лишь во время Первой мировой войны. Затем эту идею забыли и только в конце 1950-х г г. ее снова стали использовать в разных странах при создании помехоустойчивых гидролокационных корабельных станций.

Толчком к развитию гидроакустики послужила первая мировая война . Во время воины страны Антанты несли большие потери торгового и военного флота из-за действия немецких подводных лодок. Возникла необходимость в поиске средств борьбы с ними. Вскоре они были найдены. Подводную лодку в подводном положении можно услышать по шуму, создаваемому гребными винтами и работающими механизмами. Прибор, обнаруживающий шумящие объекты и определяющий их местонахождение, был назван шумопеленгатор . Французский физик П. Ланжевен в 1915 г. предложил использовать чувствительный приемник из сегнетовой соли для первой шумопеленгаторной станции.

Основы гидроакустики

Особенности распространения акустических волн в воде

Компоненты события появления эхосигнала.

Начало всесторонних и фундаментальных исследований по распространению акустических волн в воде было положено в годы Второй мировой войны, что диктовалось необходимостью решения практических задач военно-морских флотов и в первую очередь подводных лодок. Экспериментальные и теоретические работы были продолжены и в послевоенные годы и обобщены в ряде монографий. В результате этих работ были выявлены и уточнены некоторые особенности распространения акустических волн в воде: поглощение, затухание, отражение и рефракция.

Поглощение энергии акустической волны в морской воде обуславливается двумя процессами: внутренним трением среды и диссоциацией растворенных в ней солей. Первый процесс преобразует энергию акустической волны в тепловую, а второй - преобразуясь в химическую энергию, выводит молекулы из равновесного состояния, и они распадаются на ионы. Этот вид поглощения резко возрастает с увеличением частоты акустического колебания. Наличие в воде взвешенных частиц, микроорганизмов и температурных аномалий приводит также к затуханию акустической волны в воде. Как правило, эти потери невелики, и их включают в общее поглощение, однако иногда, как, например, в случае рассеяния от следа корабля, эти потери могут составить До 90 %. Наличие температурных аномалий приводит к тому, что акустическая волна попадает в зоны акустической тени, где она может претерпеть многократные отражения.

Наличие границ раздела вода - воздух и вода - дно приводит к отражению от них акустической волны, причем, если в первом случае акустическая волна отражается полностью, то во втором случае коэффициент отражения зависит от материала дна: плохо отражает илистое дно, хорошо - песчаное и каменистое. На небольших глубинах из-за многократного отражения акустической волны между дном и поверхностью возникает подводный звуковой канал, в котором акустическая волна может распространяться на большие расстояния. Изменение величины скорости звука на разных глубинах приводит к искривлению звуковых «лучей» - рефракции.

Рефракция звука (искривление пути звукового луча)

Рефракция звука в воде: а - летом; б - зимой; слева - изменение скорости с глубиной.

Скорость распространения звука изменяется с глубиной, причём изменения зависят от времени года и дня, глубины водоёма и ряда других причин. Звуковые лучи, выходящие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде: летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве отражаются от дна, теряя при этом значительную долю своей энергии; зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и многократно отражаются от поверхности воды, при этом теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. Вертикальное распределение скорости звука (ВРСЗ) и градиент скорости оказывают определяющее влияние на распространение звука в морской среде. Распределение скорости звука в различных районах Мирового океана различно и меняется во времени. Различают несколько типичных случаев ВРСЗ:

Рассеивание и поглощение звука неоднородностями среды.

Распространение звука в подводном звук. канале: а - изменение скорости звука с глубиной; б - ход лучей в звуковом канале.

На распространение звуков высокой частоты, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: пузырьки газов, микроорганизмы и т. д. Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей.

Рассеивание звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации , сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания. Пределы дальности распространения подводных звуков так же ограничиваются собственными шумами моря, имеющими двоякое происхождение: часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т. п.; другая часть связана с морской фауной (звуки, производимые гидробионтами: рыбами и др. морскими животными). Этим очень серьёзным аспектом занимается биогидроакустика.

Дальность распространения звуковых волн

Дальность распространения звуковых волн является сложной функцией частоты излучения, которая однозначно связана с длиной волны акустического сигнала. Как известно, высокочастотные акустические сигналы быстро затухают благодаря сильному поглощению водной средой. Низкочастотные сигналы напротив способны распространяться в водной среде на большие расстояния. Так акустический сигнал с частотой 50 Гц способен распространяться в океане на расстояния в тысячи километров, в то время как сигнал с частотой 100 кГц, обычный для гидролокатора бокового обзора, имеет дальность распространения всего 1-2 км. Приблизительные дальности действия современных гидролокаторов с различной частотой акустического сигнала (длиной волны) приведены в таблице:

Области применения.

Гидроакустика получила широкое практическое применение, поскольку ещё не создано эффективной системы передачи электромагнитных волн под водой на сколько-нибудь значительном расстоянии, и звук поэтому является единственным возможным средством связи под водой. Для этих целей пользуются звуковыми частотами от 300 до 10000 гц и ультразвуками от 10000 гц и выше. В качестве излучателей и приёмников в звуковой области используются электродинамические и пьезоэлектрические излучатели и гидрофоны, а в ультразвуковой - пьезоэлектрические и магнитострикционные.

Наиболее существенные применения гидроакустики:

  • Для решения военных задач;
  • Морская навигация;
  • Звукоподводная связь;
  • Рыбопоисковая разведка;
  • Океанологические исследования;
  • Сферы деятельности по освоению богатств дна Мирового океана;
  • Использование акустики в бассейне (дома или в тренировочном центре по синхронному плаванию)
  • Тренировка морских животных.

Примечания

Литература и источники информации

ЛИТЕРАТУРА:

  • В.В. Шулейкин Физика моря . - Москва: «Наука», 1968г.. - 1090 с.
  • И.А. Румынская Основы гидроакустики . - Москва: «Судостроение», 1979 г.. - 105 с.
  • Ю.А. Корякин Гидроакустические системы . - СПб: «Наука Санкт-Петербурга и морская мощь России», 2002 г.. - 416 с.

>>Физика: Звук в различных средах

Для распространения звука необходима упругая среда. В вакууме звуковые волны распространяться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха мы обнаружим, что звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

Звук в газах . Известно, что во время грозы мы сначала видим вспышку молнии и лишь через некоторое время слышим раскаты грома (рис. 52). Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии.

Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсенном. При температуре 20 °С она равна 343 м/с, т.е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из пулемета Калашникова (ПК). Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

Скорость звука зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При 0 °С скорость звука в воздухе составляет 331 м/с.

В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде 1284 м/с, в гелии - 965 м/с, а в кислороде - 316 м/с.

Звук в жидкостях . Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в воде впервые была измерена в 1826 г. Ж- Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии (рис. 53). На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук этого колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре 8 °С она оказалась равной примерно 1440 м/с.


На границе между двумя разными средами часть звуковой волны отражается, а часть проходит дальше. При переходе звука из воздуха в воду 99,9 % звуковой энергии отражается назад, однако давление в прошедшей в воду звуковой волне оказывается почти в 2 раза больше. Слуховой аппарат рыб реагирует именно на это. Поэтому, например, крики и шумы над поверхностью воды являются верным способом распугать морских обитателей. Человека же, оказавшегося под водой, эти крики не оглушат: при погружении в воду в его ушах останутся воздушные "пробки", которые и спасут его от звуковой перегрузки.

При переходе звука из воды в воздух снова отражается 99,9 % энергии. Но если при переходе из воздуха в воду звуковое давление увеличивалось, то теперь оно, наоборот, резко уменьшается. Именно по этой причине, например, не доходит до человека в воздухе звук, возникающий под водой при ударе одним камнем о другой.

Такое поведение звука на границе между водой и воздухом дало основание нашим предкам считать подводный мир "миром молчания". Отсюда же и выражение: "Нем как рыба". Однако еще Леонардо да Винчи предлагал слушать подводные звуки, приложив ухо к веслу, опущенному в воду. Воспользовавшись таким способом, можно убедиться, что рыбы на самом деле довольно болтливы.

Звук в твердых телах . Скорость звука в твердых телах больше, чем в жидкостях и газах. Если вы приложите ухо к рельсу, то после удара по другому концу рельса вы услышите два звука. Один из них достигнет вашего уха по рельсу, другой - по воздуху.

Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепостных стенах помещали "слухачей", которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближением вражеской конницы.

Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до их слуховых нервов не через воздух и наружное ухо, а через пол и кости.

1. Почему во время грозы мы сначала видим молнию и лишь потом слышим гром? 2. От чего зависит скорость звука в газах? 3. Почему человек, стоящий на берегу реки, не слышит звуков, возникающих под водой? 4. Почему "слухачами", которые в древние времена следили за земляными работами противника, часто были слепые люди?

Экспериментальное задание . Положив на один конец доски (или длинной деревянной линейки) наручные часы, приложите ухо к другому ее концу. Что вы слышите? Объясните явление.

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Планирование физики, планы конспектов уроков физики, школьная программа, учебники и книги по физике 8 класс, курсы и задание по физике для 8 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Мы знаем, что звук распросраняется по воздуху. Именно потому мы и можем слышать. В вакууме никаких звуков существовать не может. Но если звук передается по воздуху, вследствие взаимодействия его частиц, не будет ли он передаваться и другими веществами? Будет.

Распространение и скорость звука в разных средах

Звук передается не только воздухом. Наверное, все знают, что если приложить ухо к стене, то можно услышать разговоры в соседней комнате. В данном случае звук передается стеною. Звуки распространяются и в воде, и в других средах. Более того, распространение звука в различных средах происходит по-разному. Скорость звука различается в зависимости от вещества.

Любопытно, что скорость распространения звука в воде почти в четыре раза выше, чем в воздухе. То есть, рыбы слышат «быстрее», чем мы. В металлах и стекле звук распространяется еще быстрее. Это происходит потому, что звук это колебания среды, и звуковые волны передаются быстрее в средах с лучшей проводимостью.

Плотность и проводимость воды больше, чем у воздуха, но меньше, чем у металла. Соответственно, и звук передается по-разному. При переходе из одной среды в другую скорость звука меняется.

Длина звуковой волны также меняется при ее переходе из одной среды в другую. Прежней остается лишь ее частота. Но именно поэтому мы и можем различить, кто конкретно говорит даже сквозь стены.

Так как звук это колебания , то все законы и формулы для колебаний и волн хорошо применимы к звуковым колебаниям . При расчете скорости звука в воздухе следует учитывать и то, что эта скорость зависит от температуры воздуха. При увеличении температуры скорость распространения звука возрастает. При нормальных условиях скорость звукав воздухе составляет 340 344 м/с.

Звуковые волны

Звуковые волны, как известно из физики, распространяются в упругих средах. Именно поэтому звуки хорошо передаются землей. Приложив ухо к земле, можно издалека услышать звук шагов, топот копыт и так далее.

В детстве все наверняка развлекались, прикладывая ухо к рельсам. Стук колес поезда передается по рельсам на несколько километров. Для создания обратного эффекта звукопоглощения, используют мягкие и пористые материалы.

Например, чтобы защитить от посторонних звуков какое-либо помещение, либо, наоборот, чтобы не допустить выхода звуков из комнаты наружу, помещение обрабатывают, звукоизолируют. Стены, пол и потолок обивают специальными материалами на основе вспененных полимеров. В такой обивке очень быстро затихают все звуки.

На большие расстояния звуковая энергия распространяется только вдоль пологих лучей, которые на всем пути не касаются дна океана. В этом случае ограничением, накладываемым средой на дальность распространения звука, является поглощение его в морской воде. Основной механизм поглощения связан с релаксационными процессами, сопровождающими нарушение акустической волной термодинамического равновесия между ионами и молекулами растворенных в воде солей. Следует отметить, что главная роль в поглощении в широком диапазоне звуковых частот принадлежит серномагниевой соли MgSO4, хотя в процентном отношении ее содержание в морской воде совсем невелико - почти в 10 раз меньше, чем, например, каменной соли NаС1, которая тем не менее не играет сколько-нибудь заметной роли в поглощении звука.

Поглощение в морской воде, вообще говоря, тем больше, чем выше частота звука. На частотах от 3-5 до по крайней мере 100 кГц, где доминирует указанный выше механизм, поглощение пропорционально частоте в степени примерно 3/2. На более низких частотах включается новый механизм поглощения (возможно, он связан с наличием в воде солей бора), который становится особенно заметным в диапазоне сотен герц; здесь уровень поглощения аномально высок и существенно медленнее падает с уменьшением частоты.

Чтобы более наглядно представить себе количественные характеристики поглощения в морской воде, заметим, что за счет этого эффекта звук с частотой 100 Гц ослабляется в 10 раз на пути в 10 тыс. км, а с частотой 10 кГц - на расстоянии только в 10 км (рисунок 2). Таким образом, только низкочастотные звуковые волны могут быть использованы для дальней подводной связи, для дальнего обнаружения подводных препятствий и т.п .

Рисунок 2 – Расстояния, на которых звуки разных частот затухают в 10 раз при распространении в морской воде.

В области слышимых звуков для диапазона частот 20-2000 Гц дальность распространения под водой звуков средней интенсивности достигает 15-20 км, а в области ультразвука – 3-5 км.

Если исходить из величин затухания звука, наблюдаемых в лабораторных условиях в малых объёмах воды, то можно было бы ожидать значительно больших дальностей. Однако в естественных условиях, кроме затухания, обусловленного свойствами самой воды (т. н. вязкого затухания), сказываются ещё его рассеяние и поглощение различными неоднородностями среды.

Рефракция звука, или искривление пути звукового луча, вызывается неоднородностью свойств воды, главным образом по вертикали, вследствие трёх основных причин: изменения гидростатического давления с глубиной, изменения солёности и изменения температуры вследствие неодинакового прогрева массы воды солнечными лучами. В результате совокупного действия этих причин скорость распространения звука, составляющая около 1450 м/сек для пресной воды и около 1500 м/сек для морской, изменяется с глубиной, причём закон изменения зависит от времени года, времени дня, глубины водоёма и ряда др. причин. Звуковые лучи, вышедшие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде. Летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве своём отражаются от дна, теряя при этом значительную долю своей энергии. Наоборот, зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и претерпевают многократные отражения от поверхности воды, при которых теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. Вследствие рефракции образуются т. н. мёртвые зоны, т. е. области, расположенные недалеко от источника, в которых слышимость отсутствует.

Наличие рефракции, однако, может приводить к увеличению дальности распространения звука - явлению сверхдальнего распространения звуков под водой. На некоторой глубине под поверхностью воды находится слой, в котором звук распространяется с наименьшей скоростью; выше этой глубины скорость звука увеличивается из-за повышения температуры, а ниже - вследствие увеличения гидростатического давления с глубиной. Этот слой представляет собой своеобразный подводный звуковой канал. Луч, отклонившийся от оси канала вверх или вниз, вследствие рефракции всегда стремится попасть в него обратно. Если поместить источник и приёмник звука в этом слое, то даже звуки средней интенсивности (например, взрывы небольших зарядов в 1-2 кг) могут быть зарегистрированы на расстояниях в сотни и тысячи км. Существенное увеличение дальности распространения звука при наличии подводного звукового канала может наблюдаться при расположении источника и приёмника звука не обязательно вблизи оси канала, а, например, у поверхности. В этом случае лучи, рефрагируя книзу, заходят в глубоководные слои, где они отклоняются кверху и выходят снова к поверхности на расстоянии в несколько десятков км от источника. Далее картина распространения лучей повторяется и в результате образуется последовательность т. н. вторичных освещенных зон, которые обычно прослеживаются до расстояний в несколько сотен км.

На распространение звуков высокой частоты, в частности ультразвуков, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: микроорганизмы, пузырьки газов и т.д. Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей. Рассеяние звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации, сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания, подобно реверберации, наблюдающейся в закрытых помещениях. Подводная реверберация - довольно значительная помеха для ряда практических применений гидроакустики, в частности для гидролокации.

Пределы дальности распространения подводных звуков лимитируются ещё и т.н. собственными шумами моря, имеющими двоякое происхождение. Часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т.п. Другая часть связана с морской фауной; сюда относятся звуки, производимые рыбами и др. морскими животными .