Перекрест гомологичных хромосом. Сцепленное наследование. Нарушение сцепления. Перекрест хромосом

Закон Моргана.

Закон независимого распределения генов справедлив, если рассматриваемые гены входят в разные хромосомы в гамете (и соответственно в разные пары гомологичных хромосом в соматической клетке). Если же гены попадают в одну и ту же хромосому, то они должны наследоваться вместе. Именно этим и объясняется открытое и исследованное американским биологом Т. Морганом отклонение от второго закона Менделя, наблюдаемое всякий раз, когда рассматриваемые признаки определяются сцепленными генами, т.е. генами, входящими в одну и ту же хромосому. Совместное наследование сцепленных генов получило название закона Моргана.

Томас Хант Морган (1866 - 1945) является основателем хромосомной теории наследственности. Используя представления о хромосомах, он не только обосновал законы Менделя, но также указал условия их применимости и, кроме того, получил ряд новых важных результатов. К таким новым результатам следует отнести не только закон Моргана, но и открытое Морганом явление перекреста хромосом.

Явление перекреста хромосом.

Исследуя передачу по наследству признаков, определяемых сцепленными генами, Морган обнаружил, что сцепление не является абсолютным: среди гибридов второго поколения наблюдаются особи, у которых часть сцепленных генов унаследована от родителя, а остальные - от другого. Выполнив исследования на плодовой мушке дрозофиле, Морган нашел объяснение этому факту. Он обнаружил, что процесс образования плодовых клеток в организме (этот называют мейозом) начинается со своеобразного «прощального танца» гомологичных хромосом.

Представьте себе две вытянувшиеся гомологичные хромосомные нити, которые, перед тем как разойтись в разные гаметы, тесно прильнули друг к другу (каждый ген к соответствующему гену) и затем несколько раз закрутились вокруг самих себя. Это закручивание хромосом, или, иначе, взаимный перекрест, приводит к тому, что внутриклеточные силы, призванные разделить хромосомы, оттащить их друг от друга, разрывают хромосомы.

Место разрыва случайным образом меняется от одной пары перекрещенных хромосом к другой. В результате разрыва в одну гамету отправляется не целая хромосома, а взаимодополняющие друг друга части обеих гомологичных хромосом; другие части этих хромосом отправляются в другую гамету. Этот процесс показан схематически на рисунке 6.5. подчеркнем, что в момент разрыва соответствующие гены обеих хромосом (речь идет об аллелях) непосредственно контактируют друг с другом. Поэтому, где бы ни произошел разрыв, аллель из одной хромосомы отправиться в другую гамету, а аллель из хромосомы в другую гамету. Одним словом, не получиться так, чтобы в какой-то гамете не оказалось ни одного аллеля рассматриваемого гена. Все это можно представить так, как если бы «танцующие» пары хромосом перед расставанием обменялись друг с другом какими-то частями, причем обязательно соответствующими частями. В конечном счете в каждой образовавшейся гамете все равно окажется полный набор типов генов, присущий данной хромосоме. При этом произойдет случайное перекомбинирование отцовских и материнских аллелей.

В явление перекреста хромосом существенную роль играет случай. Случайно место разрыва в той или иной паре хромосом, а следовательно, случайна перекомбинация родительских аллелей.

Увеличивая поле действия случайного, явление перекреста хромосом способствует внутривидовому развитию, создавая дополнительные возможности перетасовки родительских генов. В то же время это явление как бы оберегает вид от возможных случайных генетических «посягательств» на него. Допустим, сто произошло случайное скрещивание особей двух разных видов и появились гибриды. У этих гибридов в каждой гомологической паре будут объединены хромосомы, весьма отличающиеся одна от другой по своей генной структуре (ведь эти хромосомы взяты от родителей, относящиеся к разным видам!). когда наступит время формирования половых клеток, такие хромосомы не могут вследствие существенных взаимных различий исполнить совместный «прощальный танец». В результате не смогут образовываться гаметы, а следовательно, и появятся гибриды второго поколения. Вот почему мулы (гибрид лошади и осла) не имеют потомства.

см. Кроссинговер.


Смотреть значение Перекре́ст Хромосо́м в других словарях

Перекрест — перекреста, м. (разг. устар.). То же, что выкрест.
Толковый словарь Ушакова

Перекрест М. — 1. Действие по знач. глаг.: перекрещивать (1), перекрестить, перекрещиваться, перекреститься. 2. Место пересечения, перекрещивания чего-л.
Толковый словарь Ефремовой

Перекрест М. Устар. — 1. То же, что: перекрещенец.
Толковый словарь Ефремовой

Перекрест — -а; м. к Перекрестить (6-7 зн.) и Перекрести́ться (3-4 зн.). П. мышечных волокон.
Толковый словарь Кузнецова

Вернекинга Перекрест — (F. Ch. G. Werneking, 1798-1835, нем. анатом) см. Перекрест верхних мозжечковых ножек.
Большой медицинский словарь

Гаметический Набор Хромосом
Большой медицинский словарь

Гаплоидный Набор Хромосом — (син.: гаметический набор хромосом, одинарный набор хромосом) совокупность хромосом, присущая зрелой половой клетке, в которой из каждой пары характерных для данного........
Большой медицинский словарь

Двигательный Перекрест — см. Перекрест пирамид.
Большой медицинский словарь

Двойной Набор Хромосом
Большой медицинский словарь

Деконденсация Хромосом — (де- + конденсация) см. Деспирализация хромосом.
Большой медицинский словарь

Деспирализация Хромосом — (син. деконденсация хромосом) процесс раскручивания спирализованных хромосом в телофазе митоза и мейоза.
Большой медицинский словарь

Диминуция Хромосом — (син. диминуция хроматина) потеря одной или нескольких хромосом или отторжение концевых участков некоторых хромосом, наблюдающееся в мейозе или митозе.
Большой медицинский словарь

Диплоидный Набор Хромосом — (син.: двойной набор хромосом, зиготический набор хромосом, полный набор хромосом, соматический набор хромосом) совокупность хромосом, присущая соматическим клеткам,........
Большой медицинский словарь

Зиготический Набор Хромосом — см. Диплоидный набор хромосом.
Большой медицинский словарь

Зрительный Перекрест — (chiasma opticum, PNA, BNA; chiasma fasciculorumopticorum, JNA; син.: перекрест зрительных нервов, хиазма) место соединения зрительных нервов, в котором перекрещиваются волокна, идущие от медиальных........
Большой медицинский словарь

Конденсация Хромосом — (лат. condensatio уплотнение, сгущение) см. Контрактация хромосом.
Большой медицинский словарь

Контрактация Хромосом — (лат. contraho, contractum стягивать, сокращать: син.: конденсация хромосом, спирализация хромосом) уплотнение витков спирали хромосом, достигающее максимума в метафазе митоза и мейоза.
Большой медицинский словарь

Генетические Карты Хромосом — схемы относительного расположения генов вхромосомах, позволяющие предсказывать характер наследования изучаемыхпризнаков организмов.
Большой энциклопедический словарь

Мейнерта Перекрест — (Th. Meynert) см. Перекрест покрышки среднего мозга дорсальный.
Большой медицинский словарь

Нерасхождение Хромосом — нарушение процесса мейоза или митоза, заключающееся в отхождении гомологичных хромосом или хроматид во время анафазы к одному и тому же полюсу; может служить причиной хромосомных аберраций.
Большой медицинский словарь

Одинарный Набор Хромосом — см. Гаплоидный набор хромосом.
Большой медицинский словарь

Основное Число Хромосом — см. Гаплоидное число.
Большой медицинский словарь

Перекрест Блоковых Нервов — (d. nervorum trochlearium, PNA, BNA, JNA) П. волокон блоковых нервов в верхнем мозговом парусе перед выходом из мозга.
Большой медицинский словарь

Назовите тип и фазу деления клеток, изображённых на рисунках. Какие процессы они иллюстрируют? К чему приводят эти процессы?

Пояснение.

1) Тип и фаза деления: Мейоз - профаза1.

2) Процессы: кроссинговер, обмен гомологичными участками хромосом. Взаимный обмен участками между гомологичными (попарными) хромосомами.

3) Результат: новая комбинация аллелей генов, следовательно комбинативная изменчивость

Примечание:

в пункте 2 был указан процесс «конъюгация», убран из критериев, т.к.

Конъ­юга­ция хро­мо­сом - по­пар­ное вре­мен­ное сбли­же­ние го­мо­ло­гич­ных хро­мо­сом, во время ко­то­ро­го между ними может про­изой­ти обмен го­мо­ло­гич­ны­ми участ­ка­ми (а может и не произойти).

Пояснение от "пользователя" сайта Евгения Скляр - уточнения к пункту 2. Тоже засчитаются проверяющими «как верные»

2) Процессы: конъюгация (синапсис) - сближение и контакт гомологичных хромосом, кроссинговер - обмен гомологичными участками хромосом.

3) Результат: новая комбинация аллелей генов, следовательно повышение генетической разнородности хромосом и, как следствие, образующихся гамет (спор).

Без комбинативной изменчивости, т.к. об изменчивости можно говорить только судя по новому поколению организмов.

Си́напсис - конъюгация хромосом, попарное временное сближение гомологичных хромосом, во время которого между ними может произойти обмен гомологичными участками... (учебник для профильных классов под ред. Шумного)

Следовательно кроссинговер - есть часть конъюгации как минимум по временным рамкам.

Источник: ЕГЭ по биологии 30.05.2013. Основная волна. Сибирь. Вариант 4., ЕГЭ- 2017

Гость 19.08.2015 17:20

В пояснении ошибка. На рисунке изображен процесс кроссинговера: 1. бивалент до кроссинговера, 2. бивалент после крассинговера.

КОНЪЮГАЦИИ НА РИСУНКЕ НЕТ.

Гульнара 01.06.2016 13:49

Кроссинговер это и есть обмен гомологичными участками хромосом, зачем отдельно через запятую писать кроссинговер, обмен участками гомологичный хромосом???

Наталья Евгеньевна Баштанник

нет, это три разных процесса:

конъюгация, кроссинговер, обмен гомологичными участками хромосом

Светлана Васильева 17.11.2016 02:56

Кроссинговер может произойти без конъюгации???? Конъюгация (сближение гомологичных хромосом) происходит всегда, а вот кроссинговер не всегда, только в 30%! Кроссинговер - это контакт гомологичных хромосом, после чего между их идентичными участками происходит обмен..... или не так?

Наталья Евгеньевна Баштанник

В чём суть вопроса?

Кроссинговер - это перекрест , взаимный обмен гомологичными участками гомологичных хромосом в результате разрыва и соединения в новом порядке их нитей - хроматид; приводит к новым комбинациям аллелей разных генов.

Почему 30%??? Вероятность кроссинговера разная , зависит от расстояния между генами. 1% кроссинговера=1М (Морганиде).

Если произошел кроссинговер - перекрест, это ещё не значит, что произойдет обмен.


После того как было доказано явление кроссинговера генетическими методами, необходимо было получить прямое доказательство обмена участками гомологичных хромосом, сопровождающегося рекомбинацией генов.

К. Штерну удалось получить у самки и самца дрозофилы половые хромосомы, отличаемые друг от друга цитологически и генетически, различающиеся по морфологии. У самок отличие х-хромосом получено за счет того, что к одной из них был присоединен фрагмент от у-хромосомы, что дало ч-образную х-хромосому с генами cr B + дикого типа. Другая х-хромосома была также составной: один из ее фрагментов, несущий центросому, содержал рецессивный ген cr (carnation) – глаза цвета гвоздики и доминантный ген В (carnation – определяет глаза цвета красной гвоздики, а доминантный к дикому типу ген Вач – полосковидные глаза). Безцентромерный фрагмент х-хромосомы не был потерян в силу того, что он прикрепился к IV хромосоме. Так как прибавка фрагмента от у-хромосомы генетически мало активной, вообщем не изменила хромосомного балланса зиготы, гетерозигота по данным генам самка была вполне жизнеспособна. Для анализирующего скрещивания были взяты самцы с нормальными х- и у-хромосомами при этом половая х-хромосома самца несла гены cr и В + в гемизиготном состоянии. В потомстве были изучены цитологически только самки, среди которых возникли два класса мух с некроссоверными хромосомами crВ и cr + В +

и два других класса мух

crВ + и cr + В

самок могли появиться только при условии произошедшего кроссинговера между генами cr и В.

Так как каждый из четырех классов отличался друг от друга не только по признакам глаз, но и по морфологии половых хромосом, то цитологически можно было установить, что кроссинговер, давший два класса мух сопровождался обменом участков х-хромосом. К.Штерн проверил цитологически 374 самки из описанного скрещивания, 369 из них соответствовали ожиданному результату. Подобный же опыт проведен был на кукурузе. В потомстве получили как некроссоверные, так и кроссоверные зерна.

У большинства изученных животных и растений хиазмы и перекрест осуществляются у обоих полов. Но существуют отдельные виды животных, у которых кроссинговер осуществляется только у гомогаметного пола, а у гетерогаметного в норме отсутстует. У самцов дрозофилы и самок шелкопряда – полностью отсутствует синапсис, т.е. парное соединение гомологичных хромосом. У гомогаметных особей этих видов (самок дрозофилы и самцы шелкопряда) перекрест хромосом протекает нормально. У многих видов млекопитающих, птиц, рыб и насекомых гетерогаметность пола не сказывается на процессе кроссинговера.

Накопленные факты, говорят о том, что в механизме перекреста хромосом большую роль играет центромера. Вблизи центромеры перекрест происходит редко, затем у дрозофилы возрастает, а к концу снова уменьшается. Поэтому на генетических картах дрозофилы вблизи центромеры локализуется генов больше, чем у удаленных от нее районах. У кукурузы такого влияния центромеры на кроссинговер не обнаружено.

На частоту перекреста в разных участках хромосомы влияет и распределение гетерохроматиновых и эухроматиновых участков. У гетерохроматинового пола (самцы дрозофилы и самки тутового шелкопряда) перекрест хромосом не обнаруживается. Однако, если эти организмы подвергнуть действию рентгеновских лучей, то в потомстве возникают кроссоверные особи. Частота кроссинговера также зависит от возраста организма. Если изучить перекрест между двумя генами, локализованными по генетической карте на небольшом расстоянии, скажем на растоянии 6 морганид друг от друга, и учитовать процента кроссинговера у самок по десяти дневкам откладки оплодотворенных яиц (за 1-10, 11-20, 21-30 дней), то частота перекреста будет колебаться соответственно: 5,9; 1,8; 3,8%. Первый возраст соответствует максимому, второй – спаду, а третий – подъем процента перекреста. У генетика не вызывает сомнения положение о том, что все механизмы, работающие в клетке организма, наследственно детерменинированы. Кроссинговер тоже контролируется генотипом. Подтверждением этому служит эффективность отбора линий на высокую и низкую частоту перекреста между двумя генами. Отбор линий по данному признаку указывает на роль генотипа в определении кроссинговера. На частоту кроссинговера генотип может влиять разными путями. На молекулярном уровне генотип регулирует точность копирования ДНК. На хромосомном уровне генотип влияет через изменение политении хромосом, степень спирализации, прочность продольных связей в нити ДНК. На частоту перекреста в сильной степени влияют различные хромосомные перестройки, поскольку они нарушают нормальный синапсис хромосом. Имеется и межхромосомное влияние на перекрест. Хромосомные перестройки произошедшие в одной паре хромосом, влияют на частоту перекрестта в негомологичных хромосомах. У кукурузы открыты гены, которые контролируют синапсис, спирализацию и слияние хромосом. Помимо зависимости кроссинговера от генотипа и физиологического состояния, на частоту перекреста оказывают влияние факторы среды: высокая и низкая температуры, ионизирующее излучение, инфракрасные лучи и т.д.

Вопросы для самоконтроля:

1.Что такое кроссинговер.

2.Цитологическое доказательство кроссинговера.

3.Генетическое доказательство кроссинговера.

С.Г. Инге-Вечтомов «Генетика с основами селекции». Москва «Высшая школа». 1989год, 590стр.

Р.Г. Заяц. и др. «Общая и медецинская генетика». Ростов- на- Дону. «Феникс». 2002год. 315стр.

1. В каких случаях происходит мейоз?

Ответ. Половые клетки животных формируются в результате особого типа деления, при котором число хромосом во вновь образующихся клетках в два раза меньше, чем в исходной материнской клетке. Таким образом, из диплоидной клетки образуются гаплоидные клетки. Это необходимо для того, чтобы сохранить постоянный набор хромосом организмов при половом размножении. Данный тип деления клетки получил название – мейоз. Мейоз (от греч. meiosis - уменьшение) - редукционное деление, при котором хромосомный набор клетки уменьшается вдвое. Для мейоза характерны те же стадии, что и для митоза, но процесс состоит из двух последовательных делений - I деление и II деление мейоза. В результате образуются не две, а четыре клетки с гаплоидным набором хромосом.

2. Какой набор хромосом называется диплоидным?

Ответ. Диплоидный набор хромосом - (другие названия - двойной набор хромосом, зиготический набор хромосом, полный набор хромосом, соматический набор хромосом) совокупность хромосом, присущая соматическим клеткам, в которой все характерные для данного биологического вида хромосомы представлены попарно; у человека диплоидный набор хромосом содержит 44 аутосомы и 2 половые хромосомы.

Вопросы после §30

1. В чем отличие мейоза от митоза?

Ответ. Основные отличия:

1. мейоз уменьшает вдвое число хромосом в дочерних клетках, митоз поддерживает число хромосом на стабильном уровне, как и в материнской клетке

2. в мейозе следуют 2 подряд деления, причем перед вторым-нет интерфазы

3. в профазе 1 мейоза есть конъюгация и возможен кроссинговер

4. в анафазе 1 мейоза к полюсам расходятся целые хромосомы. при митозе-хроматиды

5. в метафазе 1 мейоза вдоль экватора клетки выстраиваются биваленты хромосом, в митозе все хромосомы выстраиваются в одну линию

6. в результате мейоза образуется 4 дочерних клетки, в митозе-2 клетки.

2. Каково биологическое значение мейоза?

Ответ. У животных и человека мейоз приводит к образованию гаплоидных половых клеток - гамет. В ходе последующего процесса оплодотворения (слияния гамет) организм нового поколения получает диплоидный набор хромосом, а значит, сохраняет присущий данному виду организмов кариотип. Следовательно, мейоз препятствует увеличению числа хромосом при половом размножении. Без такого механизма деления хромосомные наборы удваивались бы с каждым следующим поколением.

У растений, грибов и некоторых протистов путем мейоза образуются споры. Процессы, протекающие в ходе мейоза, служат основой комбинативной изменчивости организмов. Таким образом, мейоз:

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

3. В какую фазу мейоза происходит кроссинговер?

Ответ. Профаза I мейоза наиболее продолжительна. В этой фазе помимо типичных для профазы митоза процессом спирализации ДНК и образования веретена деления про исходят два очень важных в биологическом отношении процесса: конъюгация (спаривание) и кроссинговер (перекрест) гомологичных хромосом.

При кроссинговере происходит обмен идентичными участками гомологичных хромосом. Подумайте, какое значение может иметь это явление.

Ответ. Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген, контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т. е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.

Это означает, что:

а) в ходе естественного отбора в одних хромосомах происходит накопление «полезных» аллелей (и носители таких хромосом получают преимущество в борьбе за существование), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбывают из игры – элиминируются из популяций);

б) в ходе искусственного отбора в одних хромосомах накапливаются аллели хозяйственно-ценных признаков (и носители таких хромосом сохраняются селекционером), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбраковываются).

В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые сочетания, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.