Как управляют военными беспилотниками в россии. Как работают дроны (все о технологии бпла)

Голландский дизайнер Рубен Патер создал и опубликовал в интернете инструкцию по распознаванию беспилотных летательных аппаратов. Мануал, получивший название Drone Survival Guide можно загрузить на сайте проекта.

Все дроны изображены в одном масштабе.

Кликабельно

Наши предки могли издалека узнать естественных хищников по их силуэтам. Хорошо ли мы знаем сегодняшних хищников? Беспилотники это самолёты с дистанционным управлением, которые могут использоваться для чего угодно: от спасательных операций и научных исследований до военной разведки и нанесения смертоносных ударов. Сегодня большая часть беспилотников используется военными державами для дистанционной разведки и нанесения ударов, и их число растет. По прогнозу Федерального управления авиации США 2012 года, через 20 лет только в США будет летать до 30 тысяч беспилотников. По мере того, как в ближайшем будущем повсеместно распространяется птицы-роботы, нам следует быть готовыми опознать их. Это руководство по выживанию – попытка ознакомить нас самих и следующие поколения с меняющейся технологической средой.

В руководстве показаны силуэты беспилотников, наиболее распространённых на сегодня и в ближайшем будущем типов. Для каждого указана страна и используются ли он только для разведки или также и для нанесения смертоносных ударов. Все беспилотники изображены в масштабе, чтобы был понятен их реальный размер – от самых маленьких коммерческих беспилотников величиной менее 1 метра, до Global Hawk длиной 39,9 метра.

Беспилотники имеют чрезвычайно мощную камеру, которая может различить людей и автомобили с высоты в несколько километров. Большинство беспилотников оборудованы инфракрасной камерой ночного видения, или так называемой ИК-системой переднего обзора. Они могут издалека увидеть тепло человеческого тела, днём или ночью. Однако есть способы укрыться от беспилотников.

  1. Дневная маскировка: прячьтесь в тени от зданий или деревьев. Используйте густой лес как естественное укрытие или применяйте маскировочные сети.
  2. Ночная маскировка: прячьтесь внутри зданий или под укрытием деревьев и листвы. Не включайте ручные фонарики или автомобильные фары. Ночью они могут быть легко замечены беспилотниками.
  3. Тепловая маскировка: спасательные одеяла (так называемые космические одеяла) изготовленные из майлара не пропускают инфракрасное излучение. Ночью оденьте спасательное одеяло как пончо, это поможет вам спрятаться от обнаружения инфракрасной камерой. В жаркую погоду, когда температура воздуха 36°-40°C, инфракрасная камера не может различить человека.
  4. Подождите плохой погоды. Беспилотники не могут работать при сильном ветре, дыме или грозах.
  5. Никакой беспроводной связи. Использование мобильного телефона или GPS-устройств может выдать ваше местоположение.
  6. Раскладка отражающих кусков стекла или других зеркальных материалов на крышах домов и автомобилей создаст помехи для камеры беспилотника.
  7. Ложные цели. Используйте манекены или чучела в человеческий рост, чтобы обмануть воздушную разведку.

Взлом беспилотников

Беспилотники управляются дистанционно. Их пилоты могут находиться за тысячи километров в наземных пунктах управления. Пилот управляет самолётом через спутниковый канал передачи данных. Заглушив или перехватив канал связи, можно вмешаться в управление беспилотником. Канал связи может быть зашифрован, но часто и нет.

  1. Перехват. Более сложный метод заключается в использовании спутниковой тарелки, ТВ-тюнера и программы skygrabber, чтобы перехватить частоты беспилотника. Могут быть перехвачены как данные отправляемые со спутника на беспилотник, так и идущие в обратном направлении.
  2. Создание помех. Вещанием на частотах, используемых беспилотником, может быть оборвана связь с его оператором.
  3. Подделка сигналов GPS. Портативные GPS передатчики могут посылать ложные GPS сигналы и нарушить систему навигации беспилотника. Это можно использовать для направления беспилотника по траектории, на которой он разобьется или даже для перехвата и посадки на взлетно-посадочной полосе.

В представлении большинства людей, не имеющих отношения к авиации, беспилотные летательные аппараты представляют собой несколько усложненные версии радиоуправляемых моделей самолетов. В определенном смысле так оно и есть. Однако функции этих устройств в последнее время стали настолько разнообразными, что ограничиваться только таким взглядом на них больше нельзя.

Начало беспилотной эры

Если говорить об автоматических летательных и космических дистанционно управляемых системах, то тема эта не нова. Другое дело, что в последнее десятилетие на них возникла определенная мода. По своей сути, советский челнок «Буран», совершивший космический полет без экипажа и благополучно приземлившийся в теперь уже далеком 1988 году, - тоже беспилотник. Фото поверхности Венеры и многие научные данные об этой планете (1965) также получены в автоматическом и телеметрическом режиме. И луноходы вполне соответствуют представлениям о беспилотной технике. И многие другие достижения советской науки в космической сфере. Откуда же возникла упомянутая мода? По всей видимости, она стала результатом опыта боевого применения подобной техники, а он был богатым.

А как этим пользоваться?

Управление беспилотными летательными аппаратами является такой же специальностью, как обычная Дорогую и сложную машину запросто можно разбить о землю, совершая неумелую посадку. Ее можно потерять в результате неудачного маневра или обстрела неприятелем. Как и обычный самолет или вертолет, беспилотник нужно постараться спасти и вывести из опасной зоны. Риск, конечно, не такой, как в случае с «живым» экипажем, но и разбрасываться дорогостоящим оборудованием не стоит. Сегодня в большинстве стран инструкторскую и учебную работу проводят опытные летчики, усвоившие управление БЛА. Они, как правило, не являются профессиональными педагогами и специалистами по компьютерной технике, поэтому такой подход вряд ли сохранится надолго. Требования к «виртуальному пилоту» отличаются от тех, что предъявляются к будущему курсанту при приеме в летное училище. Можно предположить, что конкурс среди поступающих на специальность «оператор БЛА» будет немалым.

Горький украинский опыт

Не вдаваясь в политическую подоплеку вооруженного конфликта в восточных областях Украины, можно отметить крайне неудачные попытки проведения воздушной разведки самолетами Ан-30 и Ан-26. Если первый из них был разработан специально для аэрофотосъемки (преимущественно мирной), то второй - исключительно транспортная модификация пассажирского Ан-24. Оба самолета были сбиты огнем ополченцев. А как же беспилотники Украины? Почему их не использовали для получения информации о дислокации сил повстанцев? Ответ прост. Их нет.

На фоне перманентного финансового кризиса в стране средств, необходимых для создания современных образцов вооружения, не нашлось. Беспилотники Украины пребывают на стадии эскизных проектов или простейших самодельных устройств. Некоторые из них собраны из радиоуправляемый авиамоделей, приобретенных в магазине «Пилотаж». Точно так же действуют и ополченцы. Не так давно по украинскому телевидению был показан якобы сбитый российский беспилотник. Фото, на котором изображена небольшая и не самая дорогая модель (без каких-либо повреждений) с кустарным образом прикрепленной видеокамерой, вряд ли может послужить иллюстрацией агрессивной военной мощи «северного соседа».

Архитектура построения навигационного комплекса беспилотных летательных аппаратов может быть различной, в зависимости от требований и выполняемой задачи, ниже рассмотрены основные из них.

Как показывает опыт разработки беспилотных летательных аппаратов, в контуре управления БЛА существуют два основных элемента. Первый - исполнительный, т.е. это сам планер с силовой установкой и рулевые механизмы. Второй - командный. Это тот элемент, который ставит задачу на полёт, принимает решение в случае необходимости изменить программу полёта, выполняет коррекцию движения летательного аппарата при его отклонениях от заданной траектории движения.

При построении комплекса управления БЛА командный элемент или его часть выносится за пределы аппарата и связывается с исполнительным элементом линией передачи.

Наибольшие трудности возникают при разработке системы управления (СУ). Это связано с тем, что БЛА должен выполнять задачи в условиях автономного полёта, следовательно, иметь полную функционально замкнутую СУ. Кроме того, малые размеры и масса БЛА приводят к увеличению количества и диапазона внешних воздействий на данные объекты по сравнению с существующими летательными аппаратами, и, следовательно, ужесточают требования к элементной базе СУ. В связи с этим СУ должна решать следующие задачи:

    стабилизация параметров движения объекта применительно к внешним помехам различной природы;

    анализ внешних данных бортовыми средствами и определение приоритетной цели в зависимости от поставленной перед БЛА задачи;

    расчет оптимальной траектории движения с целью уменьшения времени движения и расхода ресурсов БЛА;

    контроль правильности удержания траектории;

    обеспечение отказоустойчивости объекта управления или компенсация изменений его характеристик бортовыми средствами;

    выполнение вычислительных операций большого объема в реальном масштабе времени для реализации алгоритмов управления БЛА.

Следует подчеркнуть, что основной функцией, решаемой СУ, является управление движением центра масс (три канала управления) и угловыми движениями БЛА относительно центра масс (три канала управления). Если не нужно точно выдерживать движение летательного аппарата по заданной траектории, то управляют только его угловыми движениями. Управление угловыми движениями обеспечивает вполне определенное положение БЛА в пространстве по отношению к вектору скорости центра масс. Управление движением центра масс обеспечивает полёт по наилучшей (оптимальной) траектории, например, по кратчайшему пути за кратчайшее время.

Таким образом, управление полетом БЛА сводится к управлению параметрами его движения: угловыми координатами, угловыми скоростями и ускорениями, линейными координатами (дальностью, высотой, боковым перемещением) и т. д.

Существующие СУ подразделяют на автономные и неавтономные. Кроме того, в отдельную группу могут быть выделены комбинированные СУ. Особенностью автономных СУ является то, что сигналы управления движением вырабатываются аппаратурой, целиком расположенной на борту, причем эта аппаратура после запуска не получает никакой информации из пункта управления. Автономные СУ действуют по заранее определенной программе.

При использовании автономных систем существует два метода получения управляющих сигналов. Можно заранее перед стартом рассчитать, как должны изменяться во времени основные параметры движения БЛА (скорость, угол и т.д.), определяющие траекторию движения. Полученные функции времени вводятся в специальные устройства СУ в качестве заданных величин или программ. После старта в процессе полета БЛА соответствующими устройствами непрерывно изменяются текущие (действительные) значения указанных параметров. СУ осуществляет сравнение расчетных значений параметров с текущими значениями и при их неравенстве вырабатывает соответствующие сигналы управления. Если на БЛА установлена аппаратура, позволяющая вести непрерывное измерение её координат в пространстве, то автономное управление можно осуществить по-другому. Координаты, получаемые от аппаратуры, автоматически вводятся в бортовое вычислительное устройство, которое в соответствии с заранее заложенной программой вычисляет величину сигналов управления. Следовательно, заранее не задается определенная траектория, а каждый раз вычисляется в зависимости от текущих координат. При этом предполагается, что координаты объекта предварительно заложены в вычислительное устройство. На работу таких СУ не оказывают влияние искусственно создаваемые помехи. Это основное их достоинство. Кроме того, эти системы можно применять для управления БЛА с большой дальностью полета.

Определение собственных координат воздушным судном происходит ежесекундно при стандартной работе приёмника спутниковой навигационной системы (СНС). При перенастройке приемника частота определения собственных координат может быть увеличена. Практически же увеличение частоты не дает выигрыша в точности определения координат, так как скорость изменения координат накладывает ограничения на маневренность БЛА. Характер движения в течение одной секунды меняется мало, и положение БЛА можно достаточно точно рассчитать по его предыдущему положению, динамике полета и текущему маневру. В реальности стоит задача не только знать, где и в какое время находится объект, но и в зависимости от его местоположения выработать ответную реакцию.

Итак, ситуацию можно разделить на три условные категории. Первая - простейший случай мониторинга. Задача системы состоит в фиксации местоположения объекта с привязкой ко времени. Вторая - это расширение первой. Причем, в добавление к наблюдению, система вырабатывает внутри себя ответную реакцию (сигнализацию, набор вычислительных процедур, выработку внутренней команды). В этом случае время на выработку ответной реакции и на ее исполнение ничтожно мало по сравнению с дискретностью отсчета местоположения объекта. Третья категория - передача вычисленных во втором случае данных обратно на борт летательного аппарата. Например, с целью коррекции его движения. Здесь складываются времена передачи координат с летательного аппарата на пункт наблюдения, выработки команды и передачи команды обратно на борт аппарата.

Рассмотрим расположение командного элемента на пункте управления.

Одним из методов управления БЛА является пилотажный (рисунок 1.2).

Видеоинформация

Н. М. Боев, П. В. Шаршавин, И. В. Нигруца

ООО НПП «Автономные аэрокосмические системы – ГеоСервис»

Институт инженерной физики и радиоэлектроники ФГАОУ ВПО «Сибирский федеральный университет», г. Красноярск

Основными проблемами на пути создания систем связи дальнего действия являются:

  • обеспечение радиовидимости между летательным аппаратом (ЛА) и наземным комплексом управления;
  • компенсация большого затухания сигнала на трассе.

Прямая видимость между ЛА и наземным комплексом управления может быть достигнута за счет увеличения высоты полета ЛА и увеличением высоты подъема наземной антенны. Передача информации с высокой скоростью на расстояния более 300 км возможна с использованием ретрансляционного оборудования, спутниковых систем связи, стационарных систем передачи информации.

Для компенсации большого затухания сигнала на трассе могут быть предприняты следующие меры:

  • увеличение выходной мощности передатчика;
  • увеличение коэффициентов усиления антенного оборудования.

Для повышения коэффициента усиления бортового антенно-фидерного оборудования предлагается использование опорно-поворотного устройства на борту летательного аппарата. Авторами выполнен расчет бюджета канала связи для передачи информации на большие расстояния. В работе рассматриваются возможные варианты построения бортовой приемопередающей системы. Показывается, что оптимальным вариантом является создание опорно-поворотного устройства, на платформе которого размещаются: антенно-фидерное оборудование, приемопередатчики, блоки усилителей мощности и малошумящих усилителей. В этом случае удается разместить оборудование системы связи максимально компактно при использовании надежных вращающихся переходов для линий передачи цифровой информации и для линий передачи аналоговой информации с датчиков диапазонов различных длин волн.

Многие задачи, решаемые современными комплексами беспилотных летательных аппаратов (БПЛА), требуют наличия высокоскоростных линий передачи информации между БПЛА и наземным комплексом управления (НКУ) . Например, задачи оперативного мониторинга или разведки с помощью технологий БПЛА предполагают получение на борту и доставку на НКУ растровых изображений разного разрешения, получаемых с датчиков различных диапазонов длин волн. Наиболее распространенная на сегодняшний день технология передачи информации заключается в непрерывной трансляции изображения по мере его получения в цифровом или аналоговом формате, структура которого не меняется в течение всего полета.Необходимо учесть, что непрерывная трансляция изображений имеет следующие особенности:

  • значительная часть визуальной информации может не иметь искомых признаков;
  • отсутствует гарантия достоверной доставки информации;
  • требуется постоянное излучение сигнала передатчиком, что позволяет легко обнаружить БПЛА и установить его координаты.

Cуществующая технология доставки изображения не эффективно использует ресурсы радиоканала. В этой связи становится актуальным решение следующих задач:

  • реализация функции гарантированной доставки (особенно для изображений высокого пространственного разрешения);
  • реализация адаптивного снижения разрешения видеопотока в зависимости от актуального бюджета канала связи;
  • реализация возможности получения прошлого снимка в полном разрешении с целью уточнения деталей изображения;
  • создание адаптивной системы передачи информации, способной эффективно использовать энергетический и спектральный ресурс канала связи .

Как правило, на борту БПЛА размещаются не менее двух систем связи: дуплексная/полудуплексная аппаратура передачи командно-телеметрической информации и симплексная система передачи информации полезной нагрузки . Аппаратура передачи командно-телеметрической информации предназначена для низкоскоростной передачи командной информации с НКУ на борт БПЛА и низкоскоростной передачи телеметрической информации с борта БПЛА на НКУ.Аппаратура передачи информации полезной нагрузки предназначена для односторонней высокоскоростной передачи информации полезной нагрузки с борта БПЛА на НКУ. На рисунке 1 показаны возможные варианты реализации систем связи комплексов БПЛА.

Рис. 1. Системы связи комплексов БПЛА

Прямая связь между БПЛА и НКУ в диапазонах СВЧ возможна только в пределах прямой видимости. Для повышения надежности комплекса БПЛА на борту устанавливаются несколько приемопередатчиков различных диапазонов длин волн . Передача телеметрической информации при полетах на большие расстояния может осуществляться с помощью спутниковых систем связи (Iridium, Globalstarи др.).Высокоскоростная передача информации полезной нагрузки может также осуществляться через малоразмерные спутниковые терминалы, что требует установки на борт ЛА высоконаправленной антенны с возможностью сканирования. В простейшем случае это параболическая антенна на опорно-поворотном устройстве.

Несмотря на большое количество возможных вариантов реализации систем передачи командно-телеметрической информации и информации полезной нагрузки, оптимальным и наиболее часто используемым остается вид связи, при котором данные передаются напрямую между БПЛА и НКУ. В этом случае удается реализовать возможность передачи информации с большой скоростью, недоступной спутниковым системам связи, и при этом не зависеть от стационарных гражданских систем связи. Одним из ограничивающих факторов является расстояние радиовидимости между БПЛА и НКУ (табл. 1).

Высота полета БПЛА, м Дальность видимости (расстояние до радиогоризонта), км
При высоте подъема антенны НКУ, м
1 10 20 30
100 39 47 52 55
250 60 68 72 76
500 83 91 96 99
750 101 109 114 117
1000 117 124 129 132
1500 142 150 154 158
2000 163 171 176 179
3000 199 207 212 215
4000 229 237 242 245
5000 256 264 268 272
6000 280 288 293 296
7000 302 310 315 318
8000 323 331 335 339
9000 342 350 355 358
10000 361 368 373 377

Без учета рефракции в атмосфере и при отсутствии препятствий на пути распространения радиоволн существует возможность организации прямой связи между БПЛА и НКУ на дальностях до 200–300 км. Для повышения дальности работы системы связи необходимо увеличивать высоту полета ЛА и использовать мачтовые сооружения для антенны НКУ (рис. 2).


Рис. 2. Дальность прямой видимости БПЛА в зависимости от высоты полета и высоты подъема антенны НКУ

Большое расстояние между БПЛА и НКУ приводит к большому затуханию сигнала на трассе (рис. 3), которое необходимо компенсировать повышением выходной мощности сигнала передатчиков и использованием антенных систем с большим коэффициентом усиления.


Рис. 3.Затухание сигнала на трассе для различных диапазонов длин волн и при различном расстоянии между БПЛА и НКУ

Передача информации с высокой скоростью (десятки и сотни Мбит/сек) возможна только в диапазонах частот выше 1 ГГц. Для компенсации большого затухания на трассе в этих диапазонах частот могут быть использованы параболические антенны большого диаметра (рис. 4). Передвижные комплексы управления БЛПА должны быть оборудованы опорно-поворотными устройствами с параболическими антеннами диаметром от 1 до 3 м, в стационарных станциях управления БЛПА могут быть использованы антенны большего диаметра.


Рис. 4.Зависимость коэффициента усиления параболической антенны от диаметра зеркала для различных диапазонов

Для расчета бюджета канала передачи информации между БПЛА и НКУ необходимо рассчитать мощность теплового шума на входе приемника, которая зависит от полосы пропускания аналогового тракта (рис. 5).

Рис. 5. Зависимость мощности теплового шума на входе приемника от ширины полосы пропускания аналогового тракта

В таблице 2 приведен анализ бюджета канала связи для рабочего диапазона частот 2,4 ГГц, расстояния между БПЛА и НКУ 150 км и полосе частот 20 МГц.

Таблица 2. Анализ бюджета канала связи от БПЛА к НКУ


Как видно из таблицы 2, для обеспечения бюджета канала связи при большом затухании сигнала на трассе необходимо использовать направленные антенны на борту БПЛА. Задача управления направлением максимального усиления бортовой антенны может быть решена несколькими способами:
  1. использование многоэлементной антенной решетки с управляемой диаграммой направленности;
  2. использование нескольких переключаемых антенн;
  3. установка антенны на опорно-поворотном устройстве.

Рассмотрим эти способы отдельно.

1. Кольцевая антенная решетка (рис. 6) может быть использована для создания антенной системы с управляемым направлением максимума диаграммы направленности. Благодаря кольцевой симметрии антенной решетки удается получить направленные диаграммы, которые мало меняются при сканировании в пределах 360º в плоскости решетки.


Рис. 6. Кольцевая антенная решетка

Для получения большого коэффициента усиления кольцевой антенной решетки необходимо увеличивать число элементов (32, 64 и более). Преимуществом антенной решетки является возможность немеханического сканирования как в азимутальной плоскости, так и по углу места. При этом во время сканирования передача сигнала может не прерываться. Использование многоэлементной антенной решетки осложняется необходимостью изготовления сложных и дорогих диаграммообразующих устройств.

2. При использовании нескольких переключаемых остронаправленных антенн пространственные направления по азимуту разбиваются на сектора (зоны, рис. 7). Минимальное количество антенн – 4, в этом случае ширина диаграммы направленности должна составлять около 90º. При использовании широко распространенных патч-антенн с шириной диаграммы направленности около 60º, число секторов равно 6. С увеличением коэффициентов усиления антенн число зон растет, для размещения большого количества антенн необходимо увеличивать габаритные размеры и массу всей антенной системы. Наличие переключаемых элементов неизбежно приводит к перерывам в передаче информации.


Рис. 7. Массив переключаемых остронаправленных антенн

При наличии нескольких антенн на борту ЛА возникает необходимость выбора антенны, направленной в сторону НКУ, требуется коммутация сигналов.Возможны несколько вариантов реализации подобной системы:

А. переключение выхода усилителя мощности передатчика между антеннами (один передатчик, один усилитель мощности, несколько антенн);

Б. переключение выхода передатчика между усилителями мощности и антеннами (один передатчик, несколько совмещенных усилителей мощности и антенн);

В. Переключение цифрового сигнала между передатчиками (число передатчиков и усилителей мощности равно числу антенн).

Рассмотрим эти варианты по отдельности.

А. В простейшем случае выходной сигнал усилителя мощности коммутируется между несколькими антеннами (рис. 8).


Рис. 8. Переключение выхода усилителя мощности передатчика между антеннами (один передатчик, один усилитель мощности, несколько антенн)

Достоинством этого варианта является использование единого передающего модуля и усилителя мощности для работы на несколько антенных устройств. Недостатками являются: потери в коммутирующем устройстве; наличие ограничений по уровню мощности для полупроводниковых коммутаторов.

Быстродействующие полупроводниковые коммутаторы имеют большие потери (0,3…2 дБ) и малую допустимую мощность: точка децибельной компрессии в основном находится до +30…40 дБм. Электромеханические коммутаторы рассчитаны на большие мощности и имеют малые потери (рис. 9).


Рис. 9. Электромеханический коммутатор DowKey 581-420802A

(1 вход, 8 выходов, 0…18 ГГц, 50 Ом, потери на частоте до 4 ГГц 0,2 дБ при максимальной мощности до 100 Вт)

Недостатком электромеханических коммутаторов является высокое время переключения (до 20 мс для DowKey 581-420802A) и высокая цена.

Б. Для снятия ограничений, которые накладывает коммутатор СВЧ-сигналов, усилитель мощности передатчика может быть вынесен за переключатель. В этом случае число усилителей мощности равно числу антенн (рис. 10).


Рис. 10. Переключение выхода передатчика между усилителями мощности и антеннами

К недостаткам такого подхода можно отнести: наличие нескольких усилителей мощности, которыми нужно управлять (включать/выключать при переключении антенн); усилители СВЧ-сигналов высокой мощности (более 1 Вт) занимают много места и имеют большую массу. Для данного варианта необходимо разрабатывать единый многоканальный блок усилителей мощности с общей системой питания и охлаждения.

В. Третий подход подразумевает отказ от переключателей СВЧ-сигналов ценой использования для каждой антенны своего передатчика и усилителя мощности. В этом случае переключатель сигналов выполняется на уровне цифровой логики (внутри ПЛИС или при помощи микроконтроллера).


Рис. 11. Переключение цифрового сигнала между передатчиками

К достоинствам данного подхода следует отнести высокую надежность системы: даже в случае выхода из строя одного из каналов передачи информации, остальные останутся рабочими, обеспечивая связь в оставшихся азимутальных секторах.

3. Установка антенны на опорно-поворотном устройстве позволяет использовать одну остронаправленную антенну для непрерывного слежения за направлением на НКУ без разрывов связи. При установке антенны на опорно-поворотном устройстве главной задачей является создание вращающегося перехода, который может быть размещен в разных местах (рис. 12):

А. вращающийся СВЧ-переход размещается перед антенной и после усилителя мощности;

Б. вращающийся переход размещается после передатчика и перед усилителем мощности и антенной;

В. передающее устройство, усилитель мощности и антенна размещаются на поворотном устройстве, через многоканальный вращающийся переход передаются цифровые сигналы и напряжение питания.


Рис. 12. Варианты размещения вращающегося перехода

Вращающийся коаксиальный переход СВЧ-сигнала является сложным устройством и, как правило, может пропускать через себя высокие мощности при низких потерях (рис. 13).


Рис. 13. Вращающийся коаксиальный переход Diamandsatcom 18-2124-0 (SMA, 0-18 ГГц, потери до 0,3 дБ, мощность до 200 Вт)

К недостаткам использования вращающегося коаксиального СВЧ-перехода нужно отнести: высокую стоимость, большие сроки поставки.

Кроме того, при установке на опорно-поворотное устройство только антенны или антенны и усилителя мощности остальное оборудование необходимо размещать как можно ближе к вращающемуся переходу, т. е. под опорно-поворотным устройством. Остронаправленная антенна может быть выполнена либо как плоская антенна (антенные решетки, апертурные антенны), либо как антенна с расположением элементов вдоль излучения (например, антенны бегущей волны: спиральная, вибраторная). Таким образом, при размещении подобного объекта на опорно-поворотном устройстве, большая часть поверхности поворотной платформы остается неиспользуемой. Для повышения эффективности использования площади поворотной платформы необходимо размещать на ней помимо антенны передающее оборудование и усилитель мощности. В этом случае требуется простой многоканальный вращающийся переход. Необходимым требованием к такому переходу является возможность передачи таких сигналов, как GigabitEthernet, и возможность передачи больших токов для питания выходного усилителя мощности (рис. 14, 15).


Рис. 14. Вращающийся переход AC7195 (Ethernet 1000BaseT, RG178, до 43 контактов общего назначения, ток до 10 А)


Рис. 15. Вращающийся переход серии ME2121 (Ethernet 1000BaseT, до 24 контактов общего назначения, ток до 10 А)

Таким образом, оптимальным является использование опорно-поворотной платформы, на которой размещается все приемопередающее оборудование. На рисунке 16 показана модель разработанной платформы для БЛПА со взлетной массой более 30 кг.


Рис. 16. Модель поворотной платформы с антеннами, приемопередатчиком и усилителем мощности

Ориентация поворотной платформы в пространстве должна осуществляться по сигналам от автопилота, который непрерывно вычисляет вектор направления на НКУ. Для повышения эффективности антенного оборудования на поворотной платформе необходимо использовать антенны с круговой поляризацией и увеличивать их апертуру за счет создания антенных решеток в горизонтальной плоскости. Сужение диаграммы направленности в горизонтальной плоскости позволит повысить коэффициент усиления антенны при постоянной ширине диаграммы направленности в вертикальной плоскости, что гарантирует возможность наведения антенны при любых допустимых углах полета ЛА.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Боев Н.М.Анализ командно-телеметрической радиолинии связи с беспилотными летательными аппаратами// Вестник Сибирского государственного аэрокосмического университета имени академика М.Ф.Решетнева. Выпуск 2 (42) / гл. ред. д.т.н. Ковалев И.В. – Красноярск: СибГАУ, 2012. – С.86–91.

2. Боев Н.М. Адаптивное изменение параметров цифровых систем связи комплексов беспилотных летательных аппаратов// 22-я Международная Крымская конференция "СВЧ-техника и телекоммуникационные технологии", 10–14 сент., 2012 г.: материалы конф.: в 2 т. Т.1.

3. Боев Н. М.Синхронизация цифровых программно-определяемых систем связи по сигналам СРНС/ Вестник Сибирского государственного аэрокосмического университета имени академика М.Ф. Решетнева. Выпуск 6 (46) / гл. ред. д.т.н. Ковалев И.В. – Красноярск: СибГАУ, 2012. – С.34–37.

4. Боев Н.М., Лебедев Ю.А. Управление энергетической эффективностью совмещенных каналов передачи данных единой системы связи // Вестник Сибирского государственного аэрокосмического университета имени академика М.Ф. Решетнева. Выпуск 1 (47) / гл. ред. д.т.н. Ковалев И.В. – Красноярск: СибГАУ, 2013. – С.11–15.

БПЛА – беспилотный летательный аппарат. Еще их называют дроны (от англ. трутень) или просто беспилотники. На самом деле никаких беспилотников не существует. Любой БПЛА имеет своего оператора-пилота, а некоторые дроны имеют по два-три оператора. В данном случае, термин «беспилотный» означает что летчик не находится на борту летательного аппарата (ЛА). Но управляет разведывательным или ударным беспилотником все-таки человек.

Применение БПЛА в военных конфликтах, с участием американской армии, в последние годы, многократно увеличилось. В связи с этим, конгрессом США в 2013 году планировалось ввести медаль «За особые боевые заслуги», которую полагали вручать операторам беспилотников и спецам боевых киберподразделений принимавшим участие в военных конфликтах. Но справедливое негодование настоящих ветеранов, участников настоящих боев, было так велико, что медаль без особой помпы тихо отменили. Это говорит, во-первых, о многократно возросшем участии операторов в боевых действиях, и, во-вторых, о назревающем конфликте в системе БПЛА – оператор.

Так кто же такой оператор-пилот дрона? Военный, принимающий ответственные решения о применении оружия? Или просто геймер виртуально управляющий дорогой игрушкой на расстоянии? Задача беспилотника не подвергать опасности человека сидящего в кабине. Действительно, физической опасности для оператора, находящегося за много миль от места боевых действий, не существует. Однако, как выяснили американские психологи и медики, оператор БПЛА, проводивший боевые операции с применением оружия, подвержен серьезным психологическим нагрузкам. Он даже подвержен посттравматическим синдромам, подобно бойцу, принимавшему непосредственное участие в боевых операциях. Как бы ни был автоматизирован дрон-беспилотник, ответственность за его действия, за применение оружия несет человек. Опыт эксплуатации оперативно-тактических беспилотных авиационных комплексов (БАК), показал, что наиболее эффективна команда из трех человек для управления и принятия решения.

Первый это сам пилот, управляющий БПЛА, второй член команды - оператор боевых систем. В его обязанности входит обнаружение, идентификация цели, и принятие решения о применении оружия. И третий из состава-оператор интеллектуальных систем, имеющий опыт управления БПЛА и владеющий системами интеллектуальной поддержки в помощь летчику, обладающий отменной реакцией в принятии решения. Эта команда, со своими рабочими местами объединена в локальную сеть, и находятся в одном операторском помещении.

Помещение мобильно и оборудовано всеми необходимыми многофункциональными органами управления, многофункциональными мониторами, и ручными органами управления. К ручным органам управления относятся кистевые самолетные ручки и флайстики на манер игровых джойстиков. Несмотря на огромное количество современного оборудования, на большое количество поступающей и обрабатываемой информации этого явно недостаточно. Это хорошо понимают пилоты, которые знают разницу между авиатренажером и реальным полетом. Как бы ни был совершенен авиасимулятор или тренажер, он имеет один существенный недостаток, так называемый «сенсорный голод». Это, прежде всего отсутствие перегрузок, которые чувствует в полете пилот «пятой точкой».

Неуловимое изменение в пространстве самолета сразу становится понятно опытному летчику как раз этой самой пресловутой «пятой точкой», и это не анекдот, автор этих строк испытал на себе это ощущение. Небольшая вертикальная или боковая нагрузка, говорит о полете больше чем все приборы вместе взятые. Так вот, оператор БПЛА как раз вот этих ощущений и лишен. Если добавить сюда отсутствие звука двигателя, и невозможность бросить мгновенный взгляд влево-вправо, вверх-назад, становится понятным термин «сенсорное голодание». Работы над обратной связью «БПЛА-пилот» сейчас ведутся полным ходом. Например, дрожание картинки на экране, и вибрация флайстика, может подсказать оператору о попадании ЛА в зону турбулентности, это позволит ему оперативнее отреагировать не неблагополучную ситуацию в полете.

Первоначально операторов набирали среди бывших или действующих пилотов. Но со временем стало понятно, что по скорости реакции, без ощущений «пятой точки», стало ясно, что профессионалы значительно уступают простым геймерам, имеющим опыт обращения с авиасимуляторами на компьютерах или игровых консолях, таких как Playstation или ХBoх. Операторы, обучающиеся пилотированию БПЛА, что называется «с нуля», быстрее осваивали сложную аппаратуру и управление ЛА, в отличие от летчиков, которые делали больше ошибок и медленнее обучались.

Но в связи с этим встает проблема уже не технического характера, а морально-этического. Профессиональный военный летчик много лет не только осваивает сложную авиационную технику, он так же готовится принимать ответственные решения в экстремальных боевых условиях. Четко осознает все меру ответственности за применение боевого оружия, за управление очень дорогостоящим ЛА. Он сам находится в гуще событий, подвергается опасности, для него это не виртуальная реальность. Оператор из гражданских, привлеченных на службу геймеров, не всегда осознает грань между виртуальным и реальным пространством. Для него сохраняется игровой момент в управлении многомиллионным беспилотником. Сейчас существует десять степеней автоматизации в системе «оператор-БПЛА». От полного управления и принятия всех решений оператором человеком, до полной автономности дрона, где человек просто наблюдатель, не принимающий никаких решений. Если в первом варианте всю моральную и правовую ответственность за отдачу команды «огонь» несет полностью человек, то во втором варианте автоматика, робот. И тогда случаи сбоя или неисправности, могут привести к фатальным последствиям. Сейчас в лабораториях США ведутся исследования и разработки голосового интерфейса для общения оператора с роботом-дроном. И для принятия ответственного решения на применение оружия, они могут выработать совместное решение, предварительно «обсудив» ситуацию.

Сейчас сохраняется тенденция большей ответственности оператора человека за принимаемые решения. Даже посадку тяжелых многофункциональных БПЛА осуществляет оператор. Дроны склонны к более крутой глиссаде на посадке, к большим перегрузкам и более жесткому касанию полосы, что зачастую приводит к выводу из строя взлетно-посадочных устройств, или попросту-шасси. И сейчас БПЛА в основном сажаются операторами-пилотами, ведь стоимость тяжелого дрона-десятки миллионов долларов.

К 2030 году планируется сконструировать полностью автономного робота-дрона, принимающего все решения автономно, вплоть до выбора цели, и нанесения боевого удара. А пока, ведущее место в управлении БПЛА занимает все-таки человек, пилот, оператор, осознающий всю меру ответственности за чьи-то жизни.

Валерий Смирнов специально для