Как образуется магнитное поле вокруг постоянных магнитов. Магнитное поле постоянных магнитов

Определение магнитного поля. Его источники

Определение

Магнитное поле - одна из форм электромагнитного поля, которое действует только на движущиеся тела, которые имеют электрический заряд или намагниченные тела не зависимо от их движения.

Источниками этого поля являются постоянные электрические токи, движущиеся электрические заряды (телами и частицами), намагниченные тела, переменные электрические поля. Источниками постоянного магнитного поля являются постоянные токи.

Свойства магнитного поля

Во времена, когда изучение магнитных явлений только началось, исследователи особенное внимание уделяли тому, что существуют полюса в намагниченных брусках. В них магнитные свойства проявлялись особенно ярко. При этом четко было видно, что полюса магнита различны. Разноименные полюса притягивались, а одноименные отталкивались. Гильберт высказал идею о существовании «магнитных зарядов». Эти представление подержал и развил Кулон. На основе опытов Кулона силовой характеристикой магнитного поля стала сила, с которой магнитное поле действует на магнитный заряд, равный единице. Кулон же обратил внимание на существенные различия между явлениями в электричестве и магнетизме. Различие проявляется уже в том, что электрические заряды можно разделить и получить тела с избытком положительного или отрицательного заряда, тогда как невозможно разделить северный и южный полюса магнита и получить тело только с одним полюсом. Из невозможности деления магнита на исключительно «северный» или «южный» Кулон решил, что два эти вида зарядов неразрывны в каждой элементарной частице намагничивающего вещества. Так, было признано, что каждая частица вещества - атом, молекула или их группа -- есть нечто вроде микро магнита с двумя полюсами. Намагничивание тела при этом -- процесс ориентации его элементарных магнитов под влиянием внешнего магнитного поля (аналог поляризации диэлектриков).

Взаимодействие токов реализуется посредством магнитных полей. Эрстед обнаружил, что магнитное поле возбуждается током и оказывает ориентирующее действие на магнитную стрелку. У Эрстеда проводник с током был расположен над магнитной стрелкой, которая могла вращаться. Когда ток шел в проводнике, стрелка поворачивалась перпендикулярно проволоке. Смена направления тока вызывало переориентацию стрелки. Из опыта Эрстеда следовало, что магнитное поле имеет направление и должно характеризоваться векторной величиной. Эту величину назвали магнитной индукцией и обозначили: $\overrightarrow{B}.$ $\overrightarrow{B}$ аналогичен вектору напряженности для электрического поля ($\overrightarrow{E}$). Аналогом вектора смещения $\overrightarrow{D}\ $для магнитного поля стал вектор $\overrightarrow{H}$- называемый вектором напряжённости магнитного поля.

Магнитное поле воздействует только на движущийся электрический заряд. Магнитное поле рождается движущимися электрическими зарядами.

Магнитное поле движущегося заряда. Магнитное поле витка с током. Принцип суперпозиции

Магнитное поле электрического заряда, который движется с постоянной скоростью, имеет вид:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\frac{q\left[\overrightarrow{v}\overrightarrow{r}\right]}{r^3}\left(1\right),\]

где ${\mu }_0=4\pi \cdot {10}^{-7}\frac{Гн}{м}(в\ СИ)$ -- магнитная постоянная, $\overrightarrow{v}$ -- скорость движения заряда, $\overrightarrow{r}$ -- радиус вектор, определяющий местоположение заряда, q -- величина заряда, $\left[\overrightarrow{v}\overrightarrow{r}\right]$- векторное произведение.

Магнитная индукция элемента с током в системе СИ:

где$\ \overrightarrow{r}$- радиус-вектор, проведенный из элемента тока в рассматриваемую точку, $\overrightarrow{dl}$- элемент проводника с током (направление задано направление тока), $\vartheta$ -- угол между $\overrightarrow{dl}$ и $\overrightarrow{r}$. Направление вектора $\overrightarrow{dB}$ -- перпендикулярно к плоскости, в которой лежат $\overrightarrow{dl}$ и $\overrightarrow{r}$. Определяется правилом правого винта.

Для магнитного поля выполняется принцип суперпозиции :

\[\overrightarrow{B}=\sum{{\overrightarrow{B}}_i\left(3\right),}\]

где ${\overrightarrow{B}}_i$ -- отдельные поля, которые порождаются движущимися зарядами, $\overrightarrow{B}$ -- суммарная индукция магнитного поля.

Пример 1

Задание: Найдите отношение сил магнитного и кулоновского взаимодействия двух электронов, которые движутся с одинаковыми скоростями $v$ параллельно. Расстояние между частицами постоянно.

\[\overrightarrow{F_m}=q\left[\overrightarrow{v}\overrightarrow{B}\right]\left(1.1\right).\]

Поле, которое создает второй движущийся электрон равно:

\[\overrightarrow{B}=\frac{{\mu }_0}{4\pi }\frac{q\left[\overrightarrow{v}\overrightarrow{r}\right]}{r^3}\left(1.2\right).\]

Пусть расстояние между электронами равно $a=r\ (постоянно)$. Используем алгебраическое свойство векторного произведения (тождество Лагража ($\left[\overrightarrow{a}\left[\overrightarrow{b}\overrightarrow{c}\right]\right]=\overrightarrow{b}\left(\overrightarrow{a}\overrightarrow{c}\right)-\overrightarrow{c}\left(\overrightarrow{a}\overrightarrow{b}\right)$))

\[{\overrightarrow{F}}_m=\frac{{\mu }_0}{4\pi }\frac{q^2}{a^3}\left[\overrightarrow{v}\left[\overrightarrow{v}\overrightarrow{a}\right]\right]=\left(\overrightarrow{v}\left(\overrightarrow{v}\overrightarrow{a}\right)-\overrightarrow{a}\left(\overrightarrow{v}\overrightarrow{v}\right)\right)=-\frac{{\mu }_0}{4\pi }\frac{q^2\overrightarrow{a}v^2}{a^3}\ ,\]

$\overrightarrow{v}\left(\overrightarrow{v}\overrightarrow{a}\right)=0$, так как $\overrightarrow{v\bot }\overrightarrow{a}$.

Модуль силы $F_m=\frac{{\mu }_0}{4\pi }\frac{q^2v^2}{a^2},\ $где $q=q_e=1,6\cdot 10^{-19}Кл$.

Модуль силы Кулона, которая действует на электрон, в поле равна:

Найдем отношение сил $\frac{F_m}{F_q}$:

\[\frac{F_m}{F_q}=\frac{{\mu }_0}{4\pi }\frac{q^2v^2}{a^2}:\frac{q^2}{{4\pi {\varepsilon }_0a}^2}={\mu }_0{{\varepsilon }_0v}^2.\]

Ответ: $\frac{F_m}{F_q}={\mu }_0{{\varepsilon }_0v}^2.$

Пример 2

Задание: По витку с током в виде окружности радиуса R циркулирует постоянный ток силы I. Найдите магнитную индукцию в центре окружности.

Выберем на проводнике с током элементарный участок (рис.1), в качестве основы для решения задачи используем формулу индукции элемента витка с током:

где$\ \overrightarrow{r}$- радиус-вектор, проведенный из элемента тока в рассматриваемую точку, $\overrightarrow{dl}$- элемент проводника с током (направление задано направление тока), $\vartheta$ -- угол между $\overrightarrow{dl}$ и $\overrightarrow{r}$. Исходя из рис. 1 $\vartheta=90{}^\circ $, следовательно (2.1) упростится, кроме того расстояние от центра окружности (точки, где мы ищем магнитное поле) элемента проводника с током постоянно и равно радиусу витка (R), следовательно имеем:

От всех элементов тока будет образовываться магнитные поля, которые направлены по оси x. Это значит, что результирующий вектор индукции магнитного поля можно найти как сумму проекций отдельных векторов$\ \ \overrightarrow{dB}.$ Тогда по принципу суперпозиции полную индукцию магнитного поля можно получить, если перейти к интегралу:

Подставим (2.2) в (2.3), получим:

Ответ: $B$=$\frac{{\mu }_0}{2}\frac{I}{R}.$

К такому предмету, как магнит, все давно привыкли. Мы не видим в нём ничего особенного. Ассоциируется у нас он обычно с уроками физики или демонстрацией в виде фокусов свойств магнита для дошкольников. И редко кто задумывается, сколько магнитов окружает нас в повседневной жизни. В любой квартире их десятки. Магнит присутствует в устройстве каждого динамика, магнитофона, электробритвы, часов. Даже банка с гвоздями является таковым.

А еще?

Мы - люди - не исключение. Благодаря протекающим в организме биотокам вокруг нас существует невидимый узор его силовых линий. Огромным магнитом является планета Земля. А еще более грандиозным - плазменный шар солнца. Непостижимые человеческому разуму размеры галактик и туманностей редко допускают мысль о том, что всё это - тоже магниты.

Современной науке требуется создание новых больших и сверхмощных магнитов, области применения которых связаны с термоядерным синтезом, генерированием электрической энергии, ускорением в синхротронах заряженных частиц, подъемом затонувших судов. Создать сверхсильное поле, используя - одна из задач современной физики.

Уточним понятия

Магнитным полем называется сила, действующая на обладающие зарядом тела, находящиеся в движении. Она "не работает" с неподвижными объектами (либо лишенными заряда) и служит одной из форм электромагнитного поля, которое существует как более общее понятие.

Если тела могут создавать вокруг себя магнитное поле и сами испытывать силу его воздействия, их называют магнитами. То есть данные предметы - намагничены (обладают соответствующим моментом).

Разные материалы неодинаково реагируют на внешнее поле. Ослабляющие его действие внутри себя именуются парамагнетиками, усиливающие - диамагнетиками. Отдельные материалы обладают свойством тысячекратно усиливать в себе внешнее магнитное поле. Это - ферромагнетики (кобальт, никель с железом, гадолиний, а также соединения и сплавы упомянутых металлов). Те из них, которые, попав под воздействие сильного внешнего поля, сами приобретают магнитные свойства, именуются магнитотвердыми. Другие, способные вести себя как магниты лишь под непосредственным воздействием поля и перестающие быть таковыми с его исчезновением, - магнитомягкими.

Чуть-чуть истории

Изучением свойств постоянных магнитов люди занимаются с очень и очень давних времен. Упоминается о них в трудах ученых Древней Греции ещё за 600 лет до нашей эры. Природные (естественного происхождения) магниты можно обнаружить в залежах магнитной руды. Наиболее известный из крупных естественных магнитов хранится в Тартуском университете. Весит он 13 килограммов, а груз, который может быть поднят при его помощи, - 40 кг.

Человечество научилось создавать искусственные магниты, используя различные ферромагнетики. Ценность порошковых (из кобальта, железа и т. п.) заключается в способности удерживать груз весом в 5000 раз более собственной массы. Искусственные экземпляры могут быть постоянными (полученными из или электромагнитами, имеющими сердечник, материал которого - магнитомягкое железо. Поле напряжения в них возникает благодаря прохождению электрического тока по проводам обмотки, которой окружён сердечник.

Первая серьезная книга, содержащая попытки научного исследования свойств магнита, - труд лондонского врача Гильберта, вышедший в 1600 году. Данная работа содержит всю совокупность имеющихся на тот момент сведений, касающихся магнетизма и электричества, а также авторские эксперименты.

Любое из существующих явлений человек пытается приспособить к практической жизни. Разумеется, и магнит не стал исключением.

Как используют магниты

Какие свойства магнита человечество взяло на вооружение? Сфера применения его настолько широка, что мы имеем возможность лишь вкратце коснуться основных, самых известных устройств и областей применения данного замечательного предмета.

Компас является всем известным прибором для определения на местности направлений. Благодаря ему прокладывают пути воздушных и морских судов, наземного транспорта, цели пешеходного движения. Эти приборы могут быть магнитными (стрелочного типа), используемыми туристами и топографами, либо немагнитными (радио- и гидрокомпасы).

Первые компасы из были изготовлены в XI веке и использовались в навигации. Основано их действие на свободном повороте в горизонтальной плоскости длинной иглы из магнитного материала, уравновешенной на оси. Один её конец всегда обращен к югу, другой - к северу. Таким образом можно всегда точно узнать основные направления касательно сторон света.

Главные сферы

Области, где свойства магнита нашли основное применение - радио- и электротехника, приборостроение, автоматика и телемеханика. Из получают реле, магнитопроводы и т. п. В 1820 году было обнаружено свойство проводника с током воздействовать на стрелку магнита, принуждая ее к повороту. В это же время было сделано и другое открытие - пара параллельных проводников, сквозь которые проходит ток одного направления, обладают свойством взаимного притяжения.

Благодаря этому было сделано предположение о причине свойств магнита. Все подобные явления возникают в связи с токами, в том числе циркулирующими внутри магнитных материалов. Современные представления в науке полностью совпадают с данным предположением.

О двигателях и генераторах

На основе его создано множество разновидностей электродвигателей и электрогенераторов, то есть машин вращательного типа, принцип действия которых основан на преобразовании механической энергии в электрическую (речь идёт о генераторах) или же электрической в механическую (о двигателях). Любой генератор действует по принципу электромагнитной индукции, то есть ЭДС (электродвижущая сила) возникает в проводе, который движется в магнитном поле. Электродвигатель работает на основе явления возникновения силы в проводе с током, помещенном в поперечное поле.

Используя силу взаимодействия поля с током, который проходит через витки обмотки их подвижных частей, работают приборы, именуемые магнитоэлектрическими. В качестве нового мощного электродвигателя переменного тока, имеющего две обмотки, выступает индукционный счетчик электроэнергии. Расположенный между обмоток проводящий диск подвержен вращению крутящим моментом, сила которого пропорциональна потребляемой мощности.

А в быту?

Снабженные миниатюрной батарейкой электрические наручные часы знакомы всем. Устройство их благодаря использованию пары магнитов, пары катушек индуктивности и транзистора намного проще по числу имеющихся деталей, чем у механических часов.

Всё большее применение находят замки электромагнитного типа или такие цилиндровые замки, которые снабжены магнитными элементами. В них как ключ, так и замок оснащены кодовым набором. При попадании в скважину замка правильного ключа в нужное положение притягиваются внутренние элементы магнитного замка, что позволяет его открыть.

На действии магнитов основано устройство динамометров и гальванометра (высокочувствительного прибора, с помощью которого измеряют слабые токи). Свойства магнита нашли применение в производстве абразивов. Так именуют острые мелкие и очень твердые частицы, которые нужны для механической обработки (шлифовки, полирования, обдирки) самых разных предметов и материалов. При производстве их необходимый в составе смеси ферросилиций частично оседает на дно печей, частично внедряется в состав абразива. Для удаления его оттуда и требуются магниты.

Наука и связь

Благодаря магнитным свойствам веществ наука имеет возможность изучать структуру самых разных тел. Можно лишь упомянуть о магнитохимии или (методе обнаружения дефектов путем исследования искажения магнитного поля в определенных зонах изделий).

Применяют их и в производстве техники сверхвысокого частотного диапазона, радиосистемах связи (военного назначения и на коммерческих линиях), при термообработке, как в домашних условиях, так и в пищевой промышленности продуктов (всем хорошо знакомы микроволновые печи). Практически невозможно в рамках одной статьи перечислить все те сложнейшие технические устройства и области применения, где используются в наши дни магнитные свойства веществ.

Сфера медицины

Не стала исключением и сфера диагностики и медицинской терапии. Благодаря генерирующим рентгеновское излучение электронным линейным ускорителям осуществляется опухолевая терапия, в циклотронах или синхротронах генерируются пучки протонов, имеющие преимущества перед рентгеновскими лучами в локальной направленности и повышенной эффективности при лечении опухолей глаз и мозга.

Что касается биологической науки, то еще до середины прошлого века жизненные функции организма никак не связывались с существованием магнитных полей. Научная литература изредка пополнялась единичными сообщениями о том или ином их медицинском эффекте. Но с шестидесятых годов лавиной потекли публикации о биологических свойствах магнита.

Раньше и сейчас

Впрочем, попытки лечить им людей предпринимались алхимиками еще в XVI веке. Зафиксировано много успешных попыток излечения зубной боли, нервных расстройств, бессонницы и множества неполадок внутренних органов. Думается, что в медицине свое применение магнит нашел ничуть не позже, чем в мореплавании.

Последние полвека широко используются магнитные браслеты, популярные среди больных с нарушенным давлением крови. Ученые серьезно поверили в способность магнита повышать сопротивляемость человеческого организма. С помощью электромагнитных приборов научились измерять скорость кровеносного потока, брать пробы или вводить нужные медикаменты из капсул.

Магнитом удаляют попавшие в глаз мелкие металлические частицы. На его действии основана работа электродатчиков (любому из нас знакома процедура снятия электрокардиограммы). В наше время сотрудничество физиков с биологами для изучения глубинных механизмов воздействия на человеческий организм магнитного поля становится все более тесным и необходимым.

Неодимовый магнит: свойства и применение

Неодимовые магниты считаются обладающими максимальным влиянием на человеческое здоровье. Состоят они из неодима, железа и бора. Химическая формула их - NdFeB. Главным преимуществом такого магнита считается сильное воздействие его поля при относительно небольшом размере. Так, вес магнита силой в 200 гаусс составляет около 1 гр. Для сравнения, равный ему по силе железный магнит имеет вес, больший примерно в 10 раз.

Другое несомненное достоинство упомянутых магнитов - хорошая устойчивость и способность к сохранности нужных качеств на протяжении сотен лет. В течение века магнит теряет свои свойства лишь на 1 %.

Как именно лечатся неодимовым магнитом?

С его помощью улучшают кровообращение, стабилизируют давление, борются с мигренью.

Свойства неодимовых магнитов начали использовать для лечения порядка 2000 лет назад. Упоминания о таком виде терапии встречаются в манускриптах Древнего Китая. Лечили тогда прикладыванием намагниченных камней к человеческому телу.

Терапия существовала и в форме прикрепления их на теле. Легенда утверждает, что отличным здоровьем и неземной красотой Клеопатра обязана была постоянному ношению на голове магнитной повязки. В X веке персидскими учеными подробно описывалось благотворное влияние свойств неодимовых магнитов на человеческий организм в случае ликвидации воспалений и мышечных спазмов. По сохранившимся свидетельствам того времени можно судить о применении их для увеличения силы мышц, прочности костных тканей и снижения боли в суставах.

От всех недугов...

Доказательства эффективности такого воздействия были опубликованы в 1530 году знаменитым доктором из Швейцарии Парацельсом. В своих трудах врач описывал волшебные свойства магнита, могущего стимулировать силы организма и вызывать самоизлечение. Огромное множество болезней в те времена начали одолевать, используя магнит.

Широкое распространение получило самолечение при помощи данного средства в США в послевоенные годы (1861-1865), когда медикаментов категорически не хватало. Использовали его и как лекарство, и как обезболивающее.

Начиная с XX века лечебные свойства магнита получили научное обоснование. В 1976 году японским врачом Никагавой было введено понятие синдрома дефицита магнитного поля. Исследованиями установлены точные его симптомы. Заключаются они в слабости, утомляемости, пониженной работоспособности и нарушениях процесса сна. Также имеют место мигрени, суставные и позвоночные боли, неполадки с пищеварительной и сердечно-сосудистой системами в виде гипотонии или гипертонии. Касается синдром и области гинекологии, и кожных изменений. Применением магнитотерапии данные состояния довольно успешно удается нормализовать.

Наука не стоит на месте

Ученые продолжают экспериментировать с магнитными полями. Опыты проводятся как на животных и птицах, так и на бактериях. Условия ослабленного магнитного поля снижают успешность обменных процессов у подопытных птиц и мышей, бактерии резко прекращают размножаться. При длительном дефиците поля живые ткани подвергаются необратимым изменениям.

Именно для борьбы со всеми подобными явлениями и вызванными ими многочисленными негативными последствиями применяется магнитотерапия как таковая. Думается, что в настоящее время все полезные свойства магнитов еще не изучены в должной степени. Впереди у врачей множество интереснейших открытий и новых разработок.

Тема: Магнитное поле

Подготовил: Байгарашев Д.М.

Проверила: Габдуллина А.Т.

Магнитное Поле

Если два параллельно расположенных проводника подсоединить к источнику тока так, чтобы по ним прошел электрический ток, то в зависимости от направления тока в них проводники либо отталкиваются, либо притягиваются.

Объяснение этого явления возможно с позиции возникновения вокруг проводников особого вида материи - магнитного поля.

Силы, с которыми взаимодействуют проводники с током, называются магнитными .

Магнитное поле - это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела.

История магнетизма уходит корнями в глубокую древность, к античным цивилизациям Малой Азии. Именно на территории Малой Азии, в Магнезии, находили горную породу, образцы которой притягивались друг к другу. По названию местности такие образцы и стали называть "магнетиками". Любой магнит в форме стержня или подковы имеет два торца, которые называются полюсами; именно в этом месте сильнее всего и проявляются его магнитные свойства. Если подвесить магнит на нитке, один полюс всегда будет указывать на север. На этом принципе основан компас. Обращенный на север полюс свободно висящего магнита называется северным полюсом магнита (N). Противоположный полюс называется южным полюсом (S).

Магнитные полюсы взаимодействуют друг с другом: одноименные полюсы отталкиваются, а разноименные - притягиваются. Аналогично концепции электрического поля, окружающего электрический заряд, вводят представление о магнитном поле вокруг магнита.

В 1820 г. Эрстед (1777-1851) обнаружил, что магнитная стрелка, расположенная рядом с электрическим проводником, отклоняется, когда по проводнику течет ток, т. е. вокруг проводника с током создается магнитное поле. Если взять рамку с током, то внешнее магнитное поле взаимодействует с магнитным полем рамки и оказывает на нее ориентирующее действие, т. е. существует такое положение рамки, при котором внешнее магнитное поле оказывает на нее максимальное вращающее действие, и существует положение, когда вращающий момент сил равен нулю.

Магнитное поле в любой точке можно охарактеризовать вектором В, который называетсявектором магнитной индукции или магнитной индукцией в точке.

Магнитная индукция В - это векторная физическая величина, являющаяся силовой характеристикой магнитного поля в точке. Она равна отношению максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на ее площадь:

За направление вектора магнитной индукции В принимается направление положительной нормали к рамке, которое связано с током в рамке правилом правого винта, при механическом моменте, равном нулю.

Точно так же, как изображали линии напряженности электрического поля, изображают линии индукции магнитного поля. Линия индукции магнитного поля - воображаемая линия, касательная к которой совпадает с направлением В в точке.

Направления магнитного поля в данной точке можно определить еще как направление, которое указывает

северный полюс стрелки компаса, помещенный в эту точку. Считают, что линии индукции магнитного поля направлены от северного полюса к южному.

Направление линий магнитной индукции магнитного поля, созданного электрическим током, который течет по прямолинейному проводнику, определяется правилом буравчика или правого винта. За направление линий магнитной индукции принимается направление вращения головки винта, которое обеспечивало бы поступательное его движение по направлению электрического тока (рис. 59).

где n 01 = 4Пи 10 -7 В с/(А м). - магнитная постоянная, R - расстояние, I - сила тока в проводнике.

В отличие от линий напряженности электростатического поля, которые начинаются на положительном заряде и оканчиваются на отрицательном, линии индукции магнитного поля всегда замкнуты. Магнитного заряда аналогично электрическому заряду не обнаружено.

За единицу индукции принимается одна тесла (1 Тл) - индукция такого однородного магнитного поля, в котором на рамку площадью 1 м 2 , по которой течет ток в 1 А, действует максимальный вращающий механический момент сил, равный 1 Н м.

Индукцию магнитного поля можно определить и по силе, действующей на проводник с током в магнитном поле.

На проводник с током, помещенный в магнитное поле, действует сила Ампера, величина которой определяется следующим выражением:

где I - сила тока в проводнике, l - длина проводника, В - модуль вектора магнитной индукции, а - угол между вектором и направлением тока.

Направление силы Ампера можно определить по правилу левой руки: ладонь левой руки располагаем так, чтобы линии магнитной индукции входили в ладонь, четыре пальца располагаем по направлению тока в проводнике, то отогнутый большой палец показывает направление силы Ампера.

Учитывая, что I = q 0 nSv, и подставляя это выражение в (3.21), получим F = q 0 nSh/B sin a . Число частиц (N) в заданном объеме проводника равно N = nSl, тогда F = q 0 NvB sin a .

Определим силу, действующую со стороны магнитного поля на отдельную заряженную частицу, движущуюся в магнитном поле:

Эту силу называют силой Лоренца (1853-1928). Направление силы Лоренца можно определить по правилу левой руки: ладонь левой руки располагаем так, чтобы линии магнитной индукции входили в ладонь, четыре пальца показывали направление движения положительного заряда, большой отогнутый палец покажет направление силы Лоренца.

Сила взаимодействия между двумя параллельными проводниками, по которым текут токи I 1 и I 2 равна:

где l - часть проводника, находящаяся в магнитном поле. Если токи одного направления, то проводники притягиваются (рис. 60), если противоположного направления - отталкиваются. Силы, действующие на каждый проводник, равны по модулю, противоположны по направлению. Формула (3.22) является основной для определения единицы силы тока 1 ампер (1 А).

Магнитные свойства вещества характеризует скалярная физическая величина - магнитная проницаемость, показывающая во сколько раз индукция В магнитного поля в веществе, полностью заполняющем поле, отличается по модулю от индукции В 0 магнитного поля в вакууме:

По своим магнитным свойствам все вещества делятся на диамагнитные, парамагнитные иферромагнитные .

Рассмотрим природу магнитных свойств веществ.

Электроны в оболочке атомов вещества движутся по различным орбитам. Для упрощения считаем эти орбиты круговыми, и каждый электрон, обращающийся вокруг атомного ядра, можно рассматривать как круговой электрический ток. Каждый электрон, как круговой ток, создает магнитное поле, которое назовем орбитальным. Кроме того, у электрона в атоме есть собственное магнитное поле, называемое спиновым.

Если при внесении во внешнее магнитное поле с индукцией В 0 внутри вещества создается индукция В < В 0 , то такие вещества называются диамагнитными (n < 1).

В диамагнитных материалах при отсутствии внешнего магнитного поля магнитные поля электронов скомпенсированы, и при внесении их в магнитное поле индукция магнитного поля атома становится направленной против внешнего поля. Диамагнетик выталкивается из внешнего магнитного поля.

У парамагнитных материалов магнитная индукция электронов в атомах полностью не скомпенсирована, и атом в целом оказывается подобен маленькому постоянному магниту. Обычно в веществе все эти маленькие магниты ориентированы произвольно, и суммарная магнитная индукция всех их полей равна нулю. Если поместить парамагнетик во внешнее магнитное поле, то все маленькие магниты - атомы повернутся во внешнем магнитном поле подобно стрелкам компаса и магнитное поле в веществе усиливается (n >= 1).

Ферромагнитными называются такие материалы, в которых n " 1. В ферромагнитных материалах создаются так называемые домены, макроскопические области самопроизвольного намагничивания.

В разных доменах индукции магнитных полей имеют различные направления (рис. 61) и в большом кристалле

взаимно компенсируют друг друга. При внесении ферромагнитного образца во внешнее магнитное поле происходит смещение границ отдельных доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается.

С увеличением индукции внешнего поля В 0 возрастает магнитная индукция намагниченного вещества. При некоторых значениях В 0 индукция прекращает резкий рост. Это явление называется магнитным насыщением.

Характерная особенность ферромагнитных материалов - явление гистерезиса, которое заключается в неоднозначной зависимости индукции в материале от индукции внешнего магнитного поля при его изменении.

Петля магнитного гистерезиса - замкнутая кривая (cdc`d`c), выражающая зависимость индукции в материале от амплитуды индукции внешнего поля при периодическом достаточно медленном изменении последнего (рис. 62).

Петля гистерезиса характеризуется следующими величинами B s , B r , B c . B s - максимальное значение индукции материала при В 0s ; В r - остаточная индукция, равная значению индукции в материале при уменьшении индукции внешнего магнитного поля от B 0s до нуля; -В с и В с - коэрцитивная сила - величина, равная индукции внешнего магнитного поля, необходимого для изменения индукции в материале от остаточной до нуля.

Для каждого ферромагнетика существует такая температура (точка Кюри (Ж. Кюри, 1859-1906), выше которой ферромагнетик утрачивает свои ферромагнитные свойства.

Существует два способа приведения намагниченного ферромагнетика в размагниченное состояние: а) нагреть выше точки Кюри и охладить; б) намагничивать материал переменным магнитным полем с медленно убывающей амплитудой.

Ферромагнетики, обладающие малой остаточной индукцией и коэрцитивной силой, называются магнитомягкими. Они находят применение в устройствах, где ферромагнетику приходится часто перемагничиваться (сердечники трансформаторов, генераторов и др.).

Магнитожесткие ферромагнетики, обладающие большой коэрцитивной силой, применяются для изготовления постоянных магнитов.

Что же такое постоянный магнит? Постоянным магнитом называется тело, способное долгое время сохранять намагничивание. В результате многократных исследований, проведенных многочисленных опытов, мы можем сказать, что только три вещества на Земле могут быть постоянными магнитами (рис. 1).

Рис. 1. Постоянные магниты. ()

Только эти три вещества и их сплавы могут быть постоянными магнитами, только они могут намагничиваться и сохранять такое состояние долгое время.

Постоянные магниты использовались очень давно, и в первую очередь это приборы ориентирования в пространстве - первый компас был изобретен в Китае для того, чтобы ориентироваться в пустыне. На сегодняшний день о магнитных стрелках, о постоянных магнитах уже никто не спорит, их используют повсеместно в телефонах и в радиопередатчиках и просто в различных электротехнических изделиях. Они могут быть разными: есть полосовые магниты (рис. 2)

Рис. 2. Полосовой магнит ()

А есть магниты, которые называются дугообразными или подковообразными (рис. 3)

Рис. 3. Дугообразный магнит ()

Исследование постоянных магнитов связано исключительно с их взаимодействием. Магнитное поле может создаваться электрическим током и постоянным магнитом, поэтому первое, что было проведено, - это исследования с магнитными стрелками. Если поднести магнит к стрелке, то мы увидим взаимодействие - одноименные полюса будут отталкиваться, а разноименные будут притягиваться. Такое взаимодействие наблюдается со всеми магнитами.

Расположим вдоль полосового магнита маленькие магнитные стрелки (Рис. 4), южный полюс будет взаимодействовать с северным, а северный будет притягивать южный. Магнитные стрелки будут располагаться вдоль линии магнитного поля. Принято считать, что магнитные линии направлены вне постоянного магнита от северного полюса к южному, а внутри магнита от южного полюса к северному. Таким образом, магнитные линии замкнуты точно так же, как и у электрического тока, это концентрические окружности, они замыкаются внутри самого магнита. Получается, что вне магнита магнитное поле направлено от севера к югу, а внутри магнита от юга к северу.

Рис. 4. Лини магнитного поля полосового магнита ()

Для того чтобы пронаблюдать форму магнитного поля полосового магнита, форму магнитного поля дугообразного магнита, воспользуемся следующими приборами или деталями. Возьмем прозрачную пластину, железные опилки и проведем эксперимент. Посыплем железными опилками пластину, находящуюся на полосовом магните (рис. 5):

Рис. 5. Форма магнитного поля полосового магнита ()

Мы видим, что линии магнитного поля выходят из северного полюса и входят в южный полюс, по густоте линий можно судить о полюсах магнита, где линии гуще - там находятся полюса магнита (рис. 6).

Рис. 6. Форма магнитного поля дугообразного магнита ()

Аналогичный опыт проведем с дугообразным магнитом. Мы видим, что магнитные линии начинаются на северном и заканчиваются на южном полюсе по всему магниту.

Нам уже известно, что магнитное поле образуется только вокруг магнитов и электрических токов. Как же нам определить магнитное поле Земли? Любая стрелка, любой компас в магнитном поле Земли строго ориентированы. Раз магнитная стрелка строго ориентируется в пространстве, следовательно, на нее действует магнитное поле, и это магнитное поле Земли. Можно сделать вывод о том, что наша Земля - это большой магнит (Рис. 7) и, соответственно, этот магнит создает в пространстве достаточно мощное магнитное поле. Когда мы смотрим на стрелку магнитного компаса, мы знаем, что красная стрелочка показывает на юг, а синяя на север. Как же располагаются магнитные полюсы Земли? В этом случае необходимо помнить о том, что на северном географическом полюсе Земли располагается южный магнитный полюс и на южном географическом полюсе располагается северный магнитный полюс Земли. Если рассмотреть Землю как тело, находящееся в пространстве, то можно говорить о том, что, когда мы идем по компасу на север, мы придем на южный магнитный полюс, а когда идем на юг - мы попадем на северный магнитный полюс. На экваторе стрелочка компаса будет располагаться практически горизонтально относительно поверхности Земли, и чем ближе мы будем находиться к полюсам, тем вертикальнее будет расположение стрелки. Магнитное поле Земли могло изменяться, были времена, когда полюсы менялись относительно друг друга, то есть южный был там, где северный, и наоборот. По предположению ученых, это было предвестником больших катастроф на Земле. Последние несколько десятков тысячелетий этого не наблюдалось.

Рис. 7. Магнитное поле Земли ()

Магнитные и географические полюса не совпадают. Внутри самой Земли тоже существует магнитное поле, и, как в постоянном магните, оно направлено от южного магнитного полюса к северному.

Откуда же берется магнитное поле в постоянных магнитах? Ответ на этот вопрос дал французский ученый Андре-Мари Ампер. Он высказал идею о том, что магнитное поле постоянных магнитов объясняется элементарными, простейшими токами, протекающими внутри постоянных магнитов. Эти простейшие элементарные токи определенным образом усиливают друг друга и создают магнитное поле. Отрицательно заряженная частица - электрон - движется вокруг ядра атома, это движение можно считать направленным, и, соответственно, вокруг такого движущегося заряда создается магнитное поле. Внутри любого тела количество атомов и электронов просто огромно, соответственно, все эти элементарные токи принимают упорядоченное направление, и мы получаем достаточно значительное магнитное поле. То же самое мы можем сказать о Земле, то есть магнитное поле Земли очень напоминает магнитное поле постоянного магнита. А постоянный магнит - это достаточно яркая характеристика любого проявления магнитного поля.

Кроме существования магнитных бурь, существуют еще магнитные аномалии. Они связаны с солнечным магнитным полем. Когда на Солнце происходят достаточно мощные взрывы или выбросы, они происходят не без помощи проявления магнитного поля Солнца. Это эхо достигает Земли и сказывается на ее магнитном поле, в результате мы с вами наблюдаем магнитные бури. Магнитные аномалии связаны с залежами железных руд в Земле, огромные залежи в течение долгого времени намагничиваются магнитным полем Земли, и все тела, находящиеся вокруг, будут испытывать действие магнитного поля со стороны этой аномалии, стрелки компасов будут показывать неправильное направление.

На следующем уроке мы с вами рассмотрим другие явления, связанные с магнитными действиями.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Class-fizika.narod.ru ().
  2. Class-fizika.narod.ru ().
  3. Files.school-collection.edu.ru ().

Домашнее задание

  1. Какой из концов стрелки компаса притягивается к северному полюсу Земли?
  2. В каком месте Земли нельзя верить магнитной стрелке?
  3. О чем говорит густота линий на магните?

Источниками постоянных магнитных полей (ПМП) на рабо­чих местах являются постоянные магниты, электромагниты, силь­ноточные системы постоянного тока (линии передачи постоян­ного тока, электролитные ванны и др.).

Постоянные магниты и электромагниты широко используются в приборостроении, в магнитных шайбах подъемных кранов, в магнитных сепараторах, в устройствах для магнитной обработки воды, в магнитогидродинамических генераторах (МГД), установ­ках ядерного магнитного резонанса (ЯМР) и электронного пара­магнитного резонанса (ЭПР), а также в физиотерапевтической практике.

Основными физическими параметрами, характеризующими ПМП, являются напряженность поля (Н), магнитный поток (Ф) и магнитная индукция (В). В системе СИ единицей измерения напряженности магнитного поля является ампер на метр (А/м), магнитного потока - Вебер (Вб ), плотности магнитного потока (магнитной индукции) - тесла (Тл ).

Выявлены изменения в состоянии здоровья лиц, работающих с источниками ПМП. Чаще всего эти изменения проявляются в форме вегетодистоний, астеновегетативного и периферического вазовегетативного синдромов или их сочетания.

Согласно действующему в нашей стране нормативу («Предель­но допустимые уровни воздействия постоянных магнитных полей при работе с магнитными устройствами и магнитными материа­лами» № 1742-77), напряженность ПМП на рабочих местах не должна превышать 8 кА/м (10 мТл). Допустимые уровни ПМП, рекомендованные Международным комитетом по неионизирующим излучениям (1991) дифференцированы по контингенту, ме­сту воздействия и времени работы. Для профессионалов: 0,2 Тл - при воздействии полный рабочий день (8 ч); 2 Тл - при кратков­ременном воздействии на тело; 5 Тл - при кратковременном воз­действии на руки. Для населения уровень непрерывного воздей­ствия ПМП не должен превышать 0,01 Тл.

Источники ЭМИ радиочастотного диапазона широко исполь­зуются в самых различных отраслях народного хозяйства. Они при­меняются для передачи информации на расстоянии (радиовеща­ние, радиотелефонная связь, телевидение, радиолокация и др.). В промышленности ЭМИ радиоволнового диапазона используют­ся для индукционного и диэлектрического нагрева материалов (за­калка, плавка, напайка, сварка, напыление металлов, нагрев внут­ренних металлических частей электровакуумных приборов в про­цессе откачки, сушка древесины, нагрев пластмасс, склейка пластикатов, термообработка пищевых продуктов и др.). ЭМИ широ­ко применяются в научных исследованиях (радиоспектроскопия, радиоастрономия) и медицине (физиотерапия, хирургия, онко­логия). В ряде случаев ЭМИ возникают как побочный неиспользуемый фактор, например, вблизи воздушных линий электропере­дачи (ВЛ), трансформаторных подстанций, электроприборов, в том числе бытового назначения. Основными источниками излуче­ния ЭМП РЧ в окружающую среду служат антенные системы радиолокационных станций (РЛС), радио- и телерадиостанций, включая системы мобильной радиосвязи и воздушные линии элек­тропередачи.



Организм человека и животных весьма чувствителен к воздей­ствию ЭМП РЧ.

К критическим органам и системам относятся: центральная нервная система, глаза, гонады, а по мнению некоторых авторов, и кроветворная система. Биологическое действие этих излучений зависит от длины волны (или частоты излучения), режима генерации (непрерывный, импульсный) и условий воздействия на организм (постоянное, прерывистое; общее, мест­ное; интенсивность; длительность). Отмечено, что биологическая активность убывает с увеличением длины волны (или снижением частоты) излучения. Наиболее активными являются санти-, деци и метровый диапазоны радиоволн. Поражения, вызываемые ЭМИ РЧ, могут быть острыми и хроническими. Острые возникают при действии значительных тепловых интенсивностей излучения. Они встречаются крайне редко - при авариях или грубых нарушениях техники безопасности на РЛС. Для профессиональных условий более характерны хронические поражения, выявляемые, как правило, после нескольких лет работы с источниками ЭМИ микро­волнового диапазона.

Основными нормативными документами, регламентирующи­ми допустимые уровни воздействия ЭМИ РЧ, являются: ГОСТ 12.1.006 - 84 «ССБТ. Электромагнитные поля радиочастот.

Допус­тимые уровни» и СанПиН 2.2.4/2.1.8.055-96 «Электромагнитные излучения радиочастотного диапазона». В них нормируется энер­гетическая экспозиция (ЭЭ) для электрического (Е) и магнитно­го (Н) полей, а также плотность потока энергии (ППЭ) за рабо­чий день (табл. 5.11).

Таблица 5.11.

Предельно- допустимые уровни (ПДУ) за рабочий день для работающих

С ЭМИ РЧ

Параметр Диапазоны частот, МГц
Наименование Единица измерения 0,003-3 3-30 30-300 300-300000
ЭЭ Е (В/м) 2 *ч -
ээ н (А/м) 2 *ч - - -
ппэ (мкВт/см 2)* ч - - -

Для всего населения при непрерывном воздействии установле­ны следующие ПДУ напряженности электрического поля, В/м:

Диапазон частот МГц

0,03-0,30........................................................... 25

0,3-3,0.............................................................. 15

3-30.................................................................. 10

30-300............................................................... 3*

300-300000...................................................... 10

* Кроме телевизионных станций, ПДУ для которых дифференцированы в

зависимости от частоты от 2,5 до 5 В/м.

К числу аппаратов, работающих в области радиочастотного диапазона, относятся и видеодисплеи терминалов персональных компьютеров. В наши дни персональные компьютеры (ПК) нахо­дят широкое применение на производстве, в научных исследова­ниях, в лечебно-профилактических учреждениях, в быту, в ву­зах, школах и даже в детских садах. При использовании на произ­водстве ПК в зависимости от технологических задач могут воз­действовать на организм человека в течение длительного времени (в пределах рабочего дня). В бытовых условиях время использова­ния ПК вообще не поддается контролю.

Для видеодисплейных терминалов ПК (ВДТ) установлены сле­дующие ПДУ ЭМИ (СанПиН 2.2.2.542-96 «Гигиенические требо­вания к видеодисплейным терминалам, персональным электрон­но-вычислительным машинам и организации работы») - табл. 5.12.

Таблица 5.12. Предельно допустимые уровни ЭМИ, создаваемых ВДТ