Физика удельная теплота плавления. Тема: «Плавление и кристаллизация. Удельная теплота плавления и кристаллизации

http://sernam. ru/book_phis_t1.php? id=272

§ 269. Удельная теплота плавления

Мы видели, что сосуд со льдом и водой, внесенный в теплую комнату, не нагревается до тех пор, пока весь лед не растает. При этом из льда при получается вода при той же температуре. В это время к смеси лед — вода притекает теплота и, следовательно, внутренняя энергия этой смеси увеличивается. Отсюда мы должны сделать вывод, что внутренняя энергия воды при больше, чем внутренняя энергия льда при той же температуре. Так как кинетическая энергия молекул, воды и льда при одна и та же, то приращение внутренней энергии при плавлении является приращением потенциальной энергии молекул

Опыт обнаруживает, что сказанное справедливо для всех кристаллов. При плавлении кристалла необходимо непрерывно увеличивать внутреннюю энергию системы, причем температура кристалла и расплава остается неизменной. Обычно увеличение внутренней энергии происходит при передаче кристаллу некоторого количества теплоты. Той же цели можно достигнуть и путем совершения работы, например трением. Итак, внутренняя энергия расплава всегда больше, чем внутренняя энергия такой же массы кристаллов при той же температуре. Это означает, что упорядоченное расположение частиц (в кристаллическом состоянии) соответствует меньшей энергии, чем неупорядоченное (в расплаве).

Количество теплоты, необходимое для перехода единицы массы кристалла в расплав той же температуры, называют удельной теплотой плавления кристалла. Она выражается в джоулях на килограмм .

При затвердевании вещества теплота плавления выделяется и передается окружающим телам.

Определение удельной теплоты плавления тугоплавких тел (тел с высокой температурой плавления) представляет нелегкую задачу. Удельная теплота плавления такого легкоплавкого кристалла, как лед, может быть определена при помощи калориметра. Налив в калориметр, некоторое количество воды определенной температуры и бросив в нее известную массу льда, уже начавшего таять, т. е. имеющего температуру , выждем, пока весь лед не растает и температура воды в калориметре примет неизменяющееся значение. Пользуясь законом сохранения энергии, составим уравнение теплового баланса (§ 209), позволяющее определить удельную теплоту плавления льда.

Пусть масса воды (включая водяной эквивалент калориметра) равна масса льда — , удельная теплоемкость воды — , начальная температура воды — , конечная — , удельная теплота плавления льда — . Уравнение теплового баланса имеет вид

.

В табл. 16 приведены значения удельной теплоты плавления некоторых веществ. Обращает на себя внимание большая теплота плавления льда. Это обстоятельство очень важно, так как оно замедляет таяние льда в природе. Будь удельная теплота плавления значительно меньше, весенние паводки были бы во много раз сильнее. Зная удельную теплоту плавления, мы можем рассчитать, какое количество теплоты необходимо для расплавления какого-либо тела. Если тело уже нагрето до точки плавления, то надо затратить теплоту только на плавление его. Если же оно имеет температуру ниже точки плавления, то надо еще потратить теплоту на нагревание. Таблица 16.

269.1. В сосуд с водой, хорошо защищенный от притока теплоты извне, бросают кусочки льда при . Сколько можно бросить льда для того, чтобы он полностью растаял, если в сосуде имеется 500 г воды при ? Теплоемкость сосуда можно считать ничтожно малой по сравнению с теплоемкостью воды в нем. Удельная теплоемкость льда равна

http://earthz.ru/solves/Zadacha-po-fizike-641

2014-06-01 В ведре находится смесь воды со льдом массой m=10кг. Ведро внесли в комнату и сразу же начали измерять температуру смеси. Получившаяся зависимость температуры от времени T(ф) изображена на рис.. Удельная теплоемкость воды равна cв=4,2Дж/(кг⋅К), удельная теплота плавления льда л=340кДж/кг.

Определите массу mл льда в ведре, когда его внесли в комнату. Теплоемкостью ведра пренебречь. Решение: Как видно из графика, первые 50 минут температура смеси не менялась и оставалась равной 0∘C. Все это время теплота, получаемая смесью из комнаты, шла на таяние льда. Через 50 минут весь лед растаял и температура воды начала повышаться. За 10 минут (от ф1=50 до ф2=60мин) температура повысилась на ДT=2∘C. Теплота, поступившая к воде из комнаты за это время, равна q=cвmвДT=84кДж. Значит, за первые 50 минут к смеси из комнаты поступило количество теплоты Q=5q=420кДж. Эта теплота и пошла на таяние массы mл льда: Q=лmл. Таким образом, масса льда в ведре, внесенном в комнату, равна mл=Q/л≈1,2кг.

http://www.msuee.ru/html2/med_gidr/l3_4.html

Удельной теплотой плавления называют количество теплоты, которое требуется для расплавления одного грамма вещества. Удельная теплота плавления измеряется в джоулях на килограмм и рассчитывается, как частное от деления количества теплоты на массу плавящегося вещества.

Удельная теплота плавления для разных веществ

Различные вещества имеют разную удельную теплоту плавления.

Алюминий - металл серебристого цвета. Он легко поддается обработке и широко используется в технике. Его удельная теплота плавления составляет 290 кДж/кг.

Железо - тоже металл, один из самых распространенных на Земле. Железо находит широкое применение в промышленности. Его удельная теплота плавления равняется 277 кДж/кг.

Золото - благородный металл. Оно используется в ювелирном деле, в стоматологии и фармакологии. Удельная теплота плавления золота составляет 66.2 кДж/кг.

Серебро и платина - также благородные металлы. Их используют в изготовлении ювелирных украшений, в технике и медицине. Удельная теплота составляет 101 кДж/кг, а серебра - 105 кДж/кг.

Олово представляет собой легкоплавкий металл серого цвета. Оно широко применяется в составе припоев, для изготовления белой жести и в производстве бронзы. Удельная теплота составляет 60.7 кДж/кг.

Ртуть представляет собой подвижный металл, замерзающий при температуре -39 градусов. Это - единственный из металлов, который в нормальных условиях существует в жидком состоянии. Ртуть применяется в металлургии, медицине, технике, химической промышленности. Ее удельная теплота плавления составляет 12 кДж/кг.

Лёд представляет собой твердую фазу воды. Его удельная теплота плавления равняется 335 кДж/кг.

Нафталин - органическое вещество, сходное по химическим свойствам с . Он плавится при 80 градусах и самовоспламеняется при 525 градусах. Нафталин широко используется в химической промышленности, фармацевтике, производстве взрывчатых веществ и красителей. Удельная теплота плавления нафталина составляет 151 кДж/кг.

Газы метан и пропан используются в качестве энергоносителей и служат сырьем в химической промышленности. Удельная теплота плавления метана составляет 59 кДж/кг, а - 79.9 кДж/кг.

Для того, чтобы расплавить какое-либо вещество в твердом состоянии, необходимо его нагреть. И при нагревании любого тела отмечается одна любопытная особенность

Особенность такая: температура тела растет вплоть до температуры плавления, а потом останавливается до того момента, пока все тело целиком не перейдет в жидкое состояние. После расплавления температура вновь начинает расти, если, конечно, продолжать нагревание. То есть, существует промежуток времени, во время которого мы нагреваем тело, а оно не нагревается. Куда же девается энергия тепла, которую мы расходуем? Чтобы ответить на этот вопрос, надо заглянуть внутрь тела.

В твердом теле молекулы расположены в определенном порядке в виде кристаллов. Они практически не двигаются, лишь слегка колеблясь на месте. Для того, чтобы вещество перешло в жидкое состояние, молекулам необходимо придать дополнительную энергию, чтобы они смогли вырваться от притяжения соседних молекул в кристалликах. Нагревая тело, мы придаем молекулам эту необходимую энергию. И вот пока все молекулы не получат достаточно энергии и не разрушатся все кристаллики, температура тела не повышается. Опыты показывают, что для разных веществ одной массы требуется разное количество теплоты для полного его расплавления.

То есть существует определенная величина, от которой зависит, сколько тепла необходимо поглотить веществу для расплавления . И величина эта различна для разных веществ. Эта величина в физике называется удельная теплота плавления вещества. Опять же, вследствие опытов установлены значения удельной теплота плавления для различных веществ и собраны в специальные таблицы, из которых можно почерпнуть эти сведения. Обозначают удельную теплоту плавления греческой буквой λ (лямбда), а единицей измерения является 1 Дж/кг.

Формула удельной теплоты плавления

Удельная теплота плавления находится по формуле:

где Q - это количество теплоты, необходимое для того, чтобы расплавить тело массой m.

Опять-таки из опытов известно, что при отвердевании вещества выделяют такое же количество тепла, которое требовалось затратить на их расплавление. Молекулы, теряя энергию, образуют кристаллы, будучи не в силах сопротивляться притяжению других молекул. И опять-таки, температура тела не будет понижаться вплоть до того момента, пока не отвердеет все тело, и пока не выделится вся энергия, которая была затрачена на его плавление. То есть удельная теплота плавления показывает, как сколько надо затратить энергии, чтобы расплавить тело массой m, так и сколько энергии выделится при отвердевании данного тела.

Для примера, удельная теплота плавления воды в твердом состоянии, то есть, удельная теплота плавления льда равна 3,4*105 Дж/кг. Эти данные позволяют рассчитать, сколько потребуется энергии, чтобы расплавить лед любой массы. Зная также удельную теплоемкость льда и воды, можно рассчитать, сколько точно потребуется энергии для конкретного процесса, например, расплавить лед массой 2 кг и температурой - 30˚С и довести получившуюся воду до кипения. Такие сведения для различных веществ очень нужны в промышленности для расчета реальных затрат энергии при производстве каких-либо товаров.

Энергия, которую тело получает или теряет при теплопередаче, называется количеством теплоты. Обозначается буквой Q и измеряется в джоулях (Дж).

Количество теплоты, необходимое для нагревания тела (или выделяемое им при остывании),
зависит от рода вещества, из которого оно состоит, от массы этого тела и от изменения его температуры.

Чтобы подсчитать количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость вещества умножить на массу тела и на разность между большей и меньшей его температурами.

Где с – удельная теплоемкость данного вещества, m – его масса, t 1 -начальная температура тела, t 2 - его конечная температура.

Физическая величина, показывающая, какое количество теплоты требуется для изменения температуры тела из данного вещества массой 1 кг на 1 °С, называется удельной теплоемкость. Измеряется в Дж/(кг·ºС).

Как правило, металлы обладают низкой удельной теплоемкость, поэтому они быстро нагреваются и также быстро остывают.

Переход вещества из твердого состояния в жидкое, называют плавлением. Температуру, при которой вещество плавится, называют температурой плавления вещества. Переход вещества из жидкого состояния в твердое, называют отвердеванием или кристаллизацией. Температуру, при которой вещество отвердевает (кристаллизуется), называют температурой отвердевания или кристаллизации. Вещества отвердевают при той же температуре, при которой плавятся. Температура плавления и кристаллизации зависит от атмосферного давления: чем выше давление, тем выше температура плавления. Поэтому в таблице значения температуры плавления представлены при нормальном атмосферном давлении.

Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления. Обозначается буквой λ и измеряется в Дж/кг.

Количество теплоты, необходимое для плавления вещества массы m, взятого при температуре плавления, рассчитывается по формуле: Q=λ·m.

Для расчета количества теплоты в данных процессах значения удельных величин даны в таблицах.

Процесс плавления всегда протекает при поглощении энергии, обратный процесс идет с выделением энергии. При этом, так как в процессе плавления температура остается постоянной, средняя кинетическая энергия хаотического движения молекул не изменяется, меняется потенциальная энергия их взаимодействия.


молекулярного взаимодействия.

В нагреваемом сосуде одновременно присутствует и лед и вода – два агрегатных состояния одного и того же вещества, до тех пор, пока не растает весь лед. Далее, нагревается образовавшаяся вода. Так как удельная теплоемкость воды больше, чем удельная теплоемкость льда, вода нагревается медленнее, угол наклона линии меньше.

При плавлении происходит разрушение пространственной решетки кристаллического тела. На этот процесс расходуется определенное количество энергии от какого-нибудь внешнего источника. В результате внутренняя энергия тела в процессе плавления увеличивается.

Количество теплоты, необходимое для перехода тела из твердого состояния в жидкое при температуре плавления, называется теплотой плавления.

В процессе отвердевания тела, наоборот, внутренняя энергия тела уменьшается. Тело отдает теплоту окружающим телам. Согласно закону сохранения энергии количество теплоты, поглощенное телом при плавлении (при температуре плавления), равно количеству теплоты, отданному этим телом при отвердевании (при температуре отвердевания).

Удельная теплота плавления

Теплота плавления зависит от массы плавящегося вещества и его свойств. Зависимость теплоты плавления от рода вещества характеризуют удельной теплотой плавления этого вещества.

Удельной теплотой плавления вещества называется отношение теплоты плавления тела из этого вещества к массе тела.

Обозначим теплоту плавления через Q пл , массу тела буквой т и удельную теплоту плавления буквой λ. Тогда

Таким образом, чтобы расплавить кристаллическое тело массой m , взятое при температуре плавления, необходимо количество теплоты, равное

(8.8.2)

Теплота кристаллизации

Согласно закону сохранения энергии количество теплоты, выделяемое при кристаллизации тела (при температуре кристаллизации), равно

(8.8.3)

Из формулы (8.8.1) следует, что удельная теплота плавления в СИ выражается в джоулях на килограмм.

Довольно велика удельная теплота плавления льда 333,7 кДж/кг. Удельная теплота плавления свинца всего лишь 23 кДж/кг, а золота - 65,7 кДж/кг.

Формулы (8.8.2) и (8.8.3) используются при решении задач на составление уравнений теплового баланса в тех случаях, когда мы имеем дело с плавлением и отвердеванием кристаллических тел.

Роль теплоты плавления льда и кристаллизации воды в природе

Поглощение теплоты при таянии льда и выделение ее при замерзании воды оказывают значительное влияние на изменение температуры воздуха, особенно вблизи водоемов. Все вы, вероятно, замечали, что во время обильных снегопадов обычно наступает потепление.

Очень важно большое значение удельной теплоты плавления льда. Еще в конце XVIII в. шотландский ученый Д. Блэк (1728-1799), открывший существование теплоты плавления и кристаллизации, писал: «Если бы лед не обладал значительной теплотой плавления, то тогда весной вся масса льда должна была бы растаять в несколько минут или секунд, так как теплота из воздуха непрерывно передается льду. Но тогда последствия этого были бы ужасны: ведь и при существующем положении возникают большие наводнения и сильные потоки воды при таянии больших масс льда и снега».

Сопло космической ракеты

Приведем интересный технический пример практического использования теплоты плавления и парообразования. При изготовлении сопла для космической ракеты следует учитывать, что струя газов, выходящая из сопла ракеты, имеет температуру около 4000 °С. В природе практически отсутствуют материалы, которые в чистом виде могли бы выдержать такую температуру. Поэтому приходится прибегать ко всякого рода ухищрениям, чтобы охладить материал сопла во время горения топлива.

Сопло изготавливают методом порошковой металлургии. В полость формы закладывается порошок тугоплавкого металла (вольфрам). Затем его подвергают сдавливанию. Порошок спекается, получается пористая структура типа пемзы. Затем эта «пемза» пропитывается медью (ее температура плавления всего 1083 °С).

Полученный материал называется псевдосплавом. На рисунке 8.31 показана фотография микроструктуры псевдосплава. На белом фоне вольфрамового каркаса видны медные включения неправильной формы. Этот сплав может, как это ни невероятно, кратковременно работать даже при температуре газов, образующихся при сгорании топлива, т. е. выше 4000°С.

Происходит это следующим образом. Вначале температура сплава растет, пока не достигнет температуры плавления меди t 1 (рис. 8.32). После этого температура сопла не будет меняться, пока вся медь не расплавится (промежуток времени от τ 1 до τ 2 ). В дальнейшем температура опять возрастает до тех пор, пока медь не закипит. Это происходит при температуре t 2 = 2595 °С, меньшей температуры плавления вольфрама (3380 °С). Пока вся медь не выкипит, температура сопла опять меняться не будет, так как испаряющаяся медь забирает теплоту от вольфрама (промежуток времени от τ 3 до τ 4 ). Конечно, сколько угодно долго сопло работать не будет. После испарения меди вольфрам опять начнет нагреваться. Однако двигатель ракеты работает всего лишь несколько минут, а за это время сопло не успеет перегреться и расплавиться.