Что такое с в формуле бернулли. Схема Бернулли. Примеры решения задач

Пусть относительно события А проводится n испытаний. Введем события: Аk -- событие А осуществилось при k-том испытании, $ k=1,2,\dots , n$. Тогда $\bar{A}_{k} $ - противоположное событие (событие А не осуществилось при k-том испытании, $k=1,2,\dots , n$).

Что такое однотипные и независимые испытания

Определение

Испытания называются однотипными по отношению к событию А, если вероятности событий $А1, А2, \dots , Аn$ совпадают: $Р(А1)=Р(А2)= \dots =Р(Аn)$ (т.е. вероятность появления события А в одном испытании постоянна во всех испытаниях).

Очевидно, что в этом случае вероятности противоположных событий также совпадают: $P(\bar{A}_{1})=P(\bar{A}_{2})=...=P(\bar{A}_{n})$.

Определение

Испытания называются независимыми по отношению к событию А, если события $А1, А2, \dots , Аn$ независимы.

В этом случае

При этом равенство сохраняется при замене любого события Аk на $\bar{A}_{k} $.

Пусть по отношению к событию А проводится серия из n однотипных независимых испытаний. Ведем обозначения: р -- вероятность осуществления события А в однoм испытании; q -- вероятность противоположного события. Таким образом, Р(Ак)=р, $P(\bar{A}_{k})=q$ для любого k и p+q=1.

Вероятность того, что в серии из n испытаний событие А осуществится ровно k раз (0 ≤ k ≤ n), вычисляется по формуле:

$P_{n} (k)=C_{n}^{k} p^{k} q^{n-k} $ (1)

Равенство (1) называется формулой Бернулли.

Вероятность того, что в серии из n однoтипных независимых испытаний событие А осуществится не менее k1 раз и не более k2 раз, вычисляется по формуле:

$P_{n} (k_{1} \le k\le k_{2})=\sum \limits _{k=k_{1} }^{k_{2} }C_{n}^{k} p^{k} q^{n-k} $ (2)

Применение формулы Бернулли при больших значениях n приводит к громоздким вычислениям, поэтому в этих случаях лучше использовать другие формулы -- асимптотические.

Обобщение схемы Бернулли

Рассмотрим обобщение схемы Бeрнулли. Если в серии из n независимых испытаний, каждое из которых имеет m попарно несовместимых и возможных результатов Аk с соответствующими вероятностями Рk= рk(Аk). То справедлива формула полиномиального расспредиления:

Пример 1

Вероятность заболевания гриппом во время эпидемии равна 0,4. Найти вероятность того, что из 6 сoтрудников фирмы заболеют

  1. ровно 4 сотрудника;
  2. не более 4-х сотрудников.

Решение. 1) Очевидно, что для решения данной задачи применима формула Бернулли, где n=6; k=4; р=0,4; q=1-р=0,6. Применяя формулу (1), получим: $P_{6} (4)=C_{6}^{4} \cdot 0,4^{4} \cdot 0,6^{2} \approx 0,138$.

Для решения этой задачи применима формула (2), где k1=0 и k2=4. Имеем:

\[\begin{array}{l} {P_{6} (0\le k\le 4)=\sum \limits _{k=0}^{4}C_{6}^{k} p^{k} q^{6-k} =C_{6}^{0} \cdot 0,4^{0} \cdot 0,6^{6} +C_{6}^{1} \cdot 0,4^{1} \cdot 0,6^{5} +C_{6}^{2} \cdot 0,4^{2} \cdot 0,6^{4} +} \\ {+C_{6}^{3} \cdot 0,4^{3} \cdot 0,6^{3} +C_{6}^{4} \cdot 0,4^{4} \cdot 0,6^{2} \approx 0,959.} \end{array}\]

Следует заметить, что эту задачу проще решать, используя противоположное событие -- заболело более 4-х сотрудников. Тогда с учетом формулы (7) о вероятностях противоположных событий получим:

Ответ:$\ 0,959$.

Пример 2

В урнe 20 белых и 10 черных шаров. Вынули 4 шара , причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых рисунок 1.

Рисунок 1.

Решение. Пусть событие А состоит в том, что -- достали белый шар. Тогда вероятности $D (A)=\frac{2}{3} ,\, \, D (\overline{A})=1-\frac{2}{3} =\frac{1}{3} $.

По формуле Бернулли требуемая вероятность равна $D_{4} (2)=N_{4}^{2} \left(\frac{2}{3} \right)^{2} \left(\frac{1}{3} \right)^{2} =\frac{8}{27} $.

Ответ: $\frac{8}{27} $.

Пример 3

Определить вероятность того, что в семье, имеющей 5 детей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки $\partial =\frac{1}{2} ,\, q=\frac{1}{2} $-вероятность рождения мальчика. В семье не больше трех девочек означает, что девочек родилась либо одна, либо две, либо три, либо в семье все мальчики.

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки: $D_{5} (0)=q^{5} =\frac{1}{32} $,

\ \ \

Следовательно, искомая вероятность $D =D_{5} (0)+D_{5} (1)+D_{5} (2)+D_{5} (3)=\frac{13}{16} $.

Ответ: $\frac{13}{16} $.

Пример 4

Первый стрeлок при одном выстриле может попасть в десятку с вероятностью 0,6 в девятку с вероятностью 0,3, а в восьмерку с вероятностью 0,1. Какая вероятность того, что при 10 выстрелах он попадет в десятку шесть раз, в девятку три раза и в восьмерку 1 раз?

Не будем долго размышлять о высоком — начнем сразу с определения.

Схема Бернулли — это когда производится n однотипных независимых опытов, в каждом из которых может появиться интересующее нас событие A , причем известна вероятность этого события P (A ) = p. Требуется определить вероятность того, что при проведении n испытаний событие A появится ровно k раз.

Задачи, которые решаются по схеме Бернулли, чрезвычайно разнообразны: от простеньких (типа «найдите вероятность, что стрелок попадет 1 раз из 10») до весьма суровых (например, задачи на проценты или игральные карты). В реальности эта схема часто применяется для решения задач, связанных с контролем качества продукции и надежности различных механизмов, все характеристики которых должны быть известны до начала работы.

Вернемся к определению. Поскольку речь идет о независимых испытаниях, и в каждом опыте вероятность события A одинакова, возможны лишь два исхода:

  1. A — появление события A с вероятностью p;
  2. «не А» — событие А не появилось, что происходит с вероятностью q = 1 − p.

Важнейшее условие, без которого схема Бернулли теряет смысл — это постоянство. Сколько бы опытов мы ни проводили, нас интересует одно и то же событие A , которое возникает с одной и той же вероятностью p.

Между прочим, далеко не все задачи в теории вероятностей сводятся к постоянным условиям. Об этом вам расскажет любой грамотный репетитор по высшей математике. Даже такое нехитрое дело, как вынимание разноцветных шаров из ящика, не является опытом с постоянными условиями. Вынули очередной шар — соотношение цветов в ящике изменилось. Следовательно, изменились и вероятности.

Если же условия постоянны, можно точно определить вероятность того, что событие A произойдет ровно k раз из n возможных. Сформулируем этот факт в виде теоремы:

Теорема Бернулли. Пусть вероятность появления события A в каждом опыте постоянна и равна р. Тогда вероятность того, что в n независимых испытаниях событие A появится ровно k раз, рассчитывается по формуле:

где C n k — число сочетаний, q = 1 − p.

Эта формула так и называется: формула Бернулли. Интересно заметить, что задачи, приведенные ниже, вполне решаются без использования этой формулы. Например, можно применить формулы сложения вероятностей. Однако объем вычислений будет просто нереальным.

Задача. Вероятность выпуска бракованного изделия на станке равна 0,2. Определить вероятность того, что в партии из десяти выпущенных на данном станке деталей ровно k будут без брака. Решить задачу для k = 0, 1, 10.

По условию, нас интересует событие A выпуска изделий без брака, которое случается каждый раз с вероятностью p = 1 − 0,2 = 0,8. Нужно определить вероятность того, что это событие произойдет k раз. Событию A противопоставляется событие «не A », т.е. выпуск бракованного изделия.

Таким образом, имеем: n = 10; p = 0,8; q = 0,2.

Итак, находим вероятность того, что в партии все детали бракованные (k = 0), что только одна деталь без брака (k = 1), и что бракованных деталей нет вообще (k = 10):

Задача. Монету бросают 6 раз. Выпадение герба и решки равновероятно. Найти вероятность того, что:

  1. герб выпадет три раза;
  2. герб выпадет один раз;
  3. герб выпадет не менее двух раз.

Итак, нас интересует событие A , когда выпадает герб. Вероятность этого события равна p = 0,5. Событию A противопоставляется событие «не A », когда выпадает решка, что случается с вероятностью q = 1 − 0,5 = 0,5. Нужно определить вероятность того, что герб выпадет k раз.

Таким образом, имеем: n = 6; p = 0,5; q = 0,5.

Определим вероятность того, что герб выпал три раза, т.е. k = 3:

Теперь определим вероятность того, что герб выпал только один раз, т.е. k = 1:

Осталось определить, с какой вероятностью герб выпадет не менее двух раз. Основная загвоздка — во фразе «не менее». Получается, что нас устроит любое k , кроме 0 и 1, т.е. надо найти значение суммы X = P 6 (2) + P 6 (3) + ... + P 6 (6).

Заметим, что эта сумма также равна (1 − P 6 (0) − P 6 (1)), т.е. достаточно из всех возможных вариантов «вырезать» те, когда герб выпал 1 раз (k = 1) или не выпал вообще (k = 0). Поскольку P 6 (1) нам уже известно, осталось найти P 6 (0):

Задача. Вероятность того, что телевизор имеет скрытые дефекты, равна 0,2. На склад поступило 20 телевизоров. Какое событие вероятнее: что в этой партии имеется два телевизора со скрытыми дефектами или три?

Интересующее событие A — наличие скрытого дефекта. Всего телевизоров n = 20, вероятность скрытого дефекта p = 0,2. Соответственно, вероятность получить телевизор без скрытого дефекта равна q = 1 − 0,2 = 0,8.

Получаем стартовые условия для схемы Бернулли: n = 20; p = 0,2; q = 0,8.

Найдем вероятность получить два «дефектных» телевизора (k = 2) и три (k = 3):

\[\begin{array}{l}{P_{20}}\left(2 \right) = C_{20}^2{p^2}{q^{18}} = \frac{{20!}}{{2!18!}} \cdot {0,2^2} \cdot {0,8^{18}} \approx 0,137\\{P_{20}}\left(3 \right) = C_{20}^3{p^3}{q^{17}} = \frac{{20!}}{{3!17!}} \cdot {0,2^3} \cdot {0,8^{17}} \approx 0,41\end{array}\]

Очевидно, P 20 (3) > P 20 (2), т.е. вероятность получить три телевизора со скрытыми дефектами больше вероятности получить только два таких телевизора. Причем, разница неслабая.

Небольшое замечание по поводу факториалов. Многие испытывают смутное ощущение дискомфорта, когда видят запись «0!» (читается «ноль факториал»). Так вот, 0! = 1 по определению.

P . S . А самая большая вероятность в последней задаче — это получить четыре телевизора со скрытыми дефектами. Подсчитайте сами — и убедитесь.

При практическом применении теории вероятностей часто приходится встречаться с задачами, в которых один и тот же опыт или аналогичные опыты повторяются неоднократно. В результате каждого опыта может появиться или не появиться событие А , причем нас интересует не результат каждого отдельного опыта, а общее число появлений события А в результате серии опытов. Например, если производится группа выстрелов по одной и той же цели, нас интересует не результат каждого выстрела, а общее число попаданий. Такие задачи решаются достаточно просто, если опыты являются независимыми .

Определение . Независимыми относительно события А испытаниями называются такие, в которых вероятность события А в каждом испытании не зависит от исходов других испытаний.

Пример. Несколько последовательных выниманий карты из колоды представляют собой независимые опыты при условии, что вынутая карта каждый раз возвращается в колоду и карты перемешиваются; в противном случае это – зависимые опыты.

Пример . Несколько выстрелов представляют собой независимые опыты только в случае, если прицеливание производится заново перед каждым выстрелом; в случае, когда прицеливание производится один раз перед всей стрельбой или непрерывно осуществляется в процессе стрельбы (стрельба очередью, бомбометание серией), выстрелы представляют собой зависимые опыты.

Независимые испытания могут производиться в одинаковых или различных условиях. В первом случае вероятность события А во всех опытах одна и та же, во втором случае вероятность события А меняется от опыта к опыту. Первый случай связан со многими задачами теории надежности, теории стрельбы и приводит к так называемой схеме Бернулли , которая состоит в следующем:

1) проводится последовательность n независимых испытаний, в каждом из которых событие А может появиться, либо не появиться;

2) вероятность появления события А в каждом испытании постоянна и равна , как и вероятность его не появления .

Формула Бернулли, с помощью которой находится вероятность появления события А k раз в n независимых испытаниях, в каждом из которых событие А появляется с вероятностью p :

. (1)

Замечание 1 . С возрастанием n и k применение формулы Бернулли связано с вычислительными трудностями, поэтому формула (1) применяется, в основном, если k не превосходит 5 и n не велико.

Замечание 2. В связи с тем, что вероятности по форме представляют собой члены разложения бинома , распределение вероятностей вида (1) называется биномиальным распределением.

Пример . Вероятность попадания в цель при одном выстреле равна 0,8. Найти вероятность пяти попаданий при шести выстрелах.


Решение. Так как , то , кроме того и . Пользуясь формулой Бернулли, получим:

Пример . Производится четыре независимых выстрела по одной и той же цели с различных расстояний. Вероятности попадания при этих выстрелах равны соответственно:

Найти вероятности ни одного, одного, двух, трех и четырех попаданий:

Решение. Составляем производящую функцию:

Пример . Производится пять независимых выстрелов по цели, вероятность попадания в которую равна 0,2. Для разрушения цели достаточно трех попаданий. Найти вероятность того, что цель будет разрушена.

Решение. Вероятность разрушения цели вычисляем по формуле:

Пример . Производится десять независимых выстрелов по цели, вероятность попадания в которую при одном выстреле равна 0,1. Для поражения цели достаточно одного попадания. Найти вероятность поражения цели.

Решение. Вероятность хотя бы одного попадания вычисляем по формуле:

3. Локальная теорема Муавра-Лапласа

В приложениях часто приходится вычислять вероятности различных событий, связанных с числом появлений события в n испытаниях схемы Бернулли при больших значениях n . В этом случае вычисления по формуле (1) становятся затруднительными. Трудности возрастают, когда приходится ещё суммировать эти вероятности. Затруднения при вычислениях возникают также при малых значениях p или q .

Лаплас получил важную приближенную формулу для вероятности появления события А точно m раз, если - достаточно большое число, то есть при .

Локальная теорема Муавра – Лапласа . Если вероятность p появления события А в каждом испытании постоянна и отлична от нуля и единицы , , величина ограничена равномерно по m и n, то вероятность появления события А ровно m раз в n независимых испытаниях приближенно равна

Пусть относительно события А проводится n испытаний. Введем события: Аk -- событие А осуществилось при k-том испытании, $ k=1,2,\dots , n$. Тогда $\bar{A}_{k} $ - противоположное событие (событие А не осуществилось при k-том испытании, $k=1,2,\dots , n$).

Что такое однотипные и независимые испытания

Определение

Испытания называются однотипными по отношению к событию А, если вероятности событий $А1, А2, \dots , Аn$ совпадают: $Р(А1)=Р(А2)= \dots =Р(Аn)$ (т.е. вероятность появления события А в одном испытании постоянна во всех испытаниях).

Очевидно, что в этом случае вероятности противоположных событий также совпадают: $P(\bar{A}_{1})=P(\bar{A}_{2})=...=P(\bar{A}_{n})$.

Определение

Испытания называются независимыми по отношению к событию А, если события $А1, А2, \dots , Аn$ независимы.

В этом случае

При этом равенство сохраняется при замене любого события Аk на $\bar{A}_{k} $.

Пусть по отношению к событию А проводится серия из n однотипных независимых испытаний. Ведем обозначения: р -- вероятность осуществления события А в однoм испытании; q -- вероятность противоположного события. Таким образом, Р(Ак)=р, $P(\bar{A}_{k})=q$ для любого k и p+q=1.

Вероятность того, что в серии из n испытаний событие А осуществится ровно k раз (0 ≤ k ≤ n), вычисляется по формуле:

$P_{n} (k)=C_{n}^{k} p^{k} q^{n-k} $ (1)

Равенство (1) называется формулой Бернулли.

Вероятность того, что в серии из n однoтипных независимых испытаний событие А осуществится не менее k1 раз и не более k2 раз, вычисляется по формуле:

$P_{n} (k_{1} \le k\le k_{2})=\sum \limits _{k=k_{1} }^{k_{2} }C_{n}^{k} p^{k} q^{n-k} $ (2)

Применение формулы Бернулли при больших значениях n приводит к громоздким вычислениям, поэтому в этих случаях лучше использовать другие формулы -- асимптотические.

Обобщение схемы Бернулли

Рассмотрим обобщение схемы Бeрнулли. Если в серии из n независимых испытаний, каждое из которых имеет m попарно несовместимых и возможных результатов Аk с соответствующими вероятностями Рk= рk(Аk). То справедлива формула полиномиального расспредиления:

Пример 1

Вероятность заболевания гриппом во время эпидемии равна 0,4. Найти вероятность того, что из 6 сoтрудников фирмы заболеют

  1. ровно 4 сотрудника;
  2. не более 4-х сотрудников.

Решение. 1) Очевидно, что для решения данной задачи применима формула Бернулли, где n=6; k=4; р=0,4; q=1-р=0,6. Применяя формулу (1), получим: $P_{6} (4)=C_{6}^{4} \cdot 0,4^{4} \cdot 0,6^{2} \approx 0,138$.

Для решения этой задачи применима формула (2), где k1=0 и k2=4. Имеем:

\[\begin{array}{l} {P_{6} (0\le k\le 4)=\sum \limits _{k=0}^{4}C_{6}^{k} p^{k} q^{6-k} =C_{6}^{0} \cdot 0,4^{0} \cdot 0,6^{6} +C_{6}^{1} \cdot 0,4^{1} \cdot 0,6^{5} +C_{6}^{2} \cdot 0,4^{2} \cdot 0,6^{4} +} \\ {+C_{6}^{3} \cdot 0,4^{3} \cdot 0,6^{3} +C_{6}^{4} \cdot 0,4^{4} \cdot 0,6^{2} \approx 0,959.} \end{array}\]

Следует заметить, что эту задачу проще решать, используя противоположное событие -- заболело более 4-х сотрудников. Тогда с учетом формулы (7) о вероятностях противоположных событий получим:

Ответ:$\ 0,959$.

Пример 2

В урнe 20 белых и 10 черных шаров. Вынули 4 шара , причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых рисунок 1.

Рисунок 1.

Решение. Пусть событие А состоит в том, что -- достали белый шар. Тогда вероятности $D (A)=\frac{2}{3} ,\, \, D (\overline{A})=1-\frac{2}{3} =\frac{1}{3} $.

По формуле Бернулли требуемая вероятность равна $D_{4} (2)=N_{4}^{2} \left(\frac{2}{3} \right)^{2} \left(\frac{1}{3} \right)^{2} =\frac{8}{27} $.

Ответ: $\frac{8}{27} $.

Пример 3

Определить вероятность того, что в семье, имеющей 5 детей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки $\partial =\frac{1}{2} ,\, q=\frac{1}{2} $-вероятность рождения мальчика. В семье не больше трех девочек означает, что девочек родилась либо одна, либо две, либо три, либо в семье все мальчики.

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки: $D_{5} (0)=q^{5} =\frac{1}{32} $,

\ \ \

Следовательно, искомая вероятность $D =D_{5} (0)+D_{5} (1)+D_{5} (2)+D_{5} (3)=\frac{13}{16} $.

Ответ: $\frac{13}{16} $.

Пример 4

Первый стрeлок при одном выстриле может попасть в десятку с вероятностью 0,6 в девятку с вероятностью 0,3, а в восьмерку с вероятностью 0,1. Какая вероятность того, что при 10 выстрелах он попадет в десятку шесть раз, в девятку три раза и в восьмерку 1 раз?

На этом уроке будем находить вероятность наступления события в независимых испытаниях при повторении испытаний. Испытания называются независимыми, если вероятность того или иного исхода каждого испытания не зависит от того, какие исходы имели другие испытания . Независимые испытания могут проводиться как в одинаковых условиях, так и в различных. В первом случае вероятность появления некоторого события во всех испытаниях одна и та же, во втором случае она меняется от испытания к испытанию.

Примеры независимых повторных испытаний :

  • выйдет из строя один из узлов прибора или два, три узла, причём выход из строя каждого узла не зависит от другого узла, а вероятность выхода из строя одного узла постоянна во всех испытаниях;
  • произведённая в некоторых постоянных технологических условиях деталь, или три, четыре, пять деталей, окажутся нестандартными, причём одна деталь может оказаться нестандартной независимо от любой другой детали и вероятность того, что деталь окажется нестандатной, постоянна во всех испытаниях;
  • из нескольких выстрелов по мишени один, три или четыре выстрела попадают в цель независимо от исходов других выстрелов и вероятность попадания в цель постоянна во всех испытаниях;
  • при опускании монеты автомат сработает правильно один, два или другое число раз независимо от того, какой результат имели другие опускания монеты, и вероятность того, что автомат сработает правильно, постоянна во всех испытаниях.

Эти события можно описать одной схемой. Каждое событие наступает в каждом испытании с одной и той же вероятностью, которая не изменяется, если становятся известными результаты предыдущих испытаний. Такие испытания называются независимыми, а схема называется схемой Бернулли . Предполагается, что такие испытания могут быть повторены как угодно большое количество раз.

Если вероятность p наступления события A в каждом испытании постоянна, то вероятность того, что в n независимых испытаниях событие A наступит m раз, находится по формуле Бернулли :

(где q = 1 – p - вероятность того, что событие не наступит)

Поставим задачу – найти вероятность того, что событие такого типа в n независимых испытаниях наступит m раз.

Формула Бернулли: примеры решения задач

Пример 1. Найти вероятность того, что среди взятых случайно пяти деталей две стандартные, если вероятность того, что каждая деталь окажется стандартной, равна 0,9.

Решение. Вероятность события А , состоящего в том, что взятая случайно деталь стандартна, есть p =0,9 , а вероятность того, что она нестандартна, есть q =1–p =0,1 . Обозначенное в условии задачи событие (обозначим его через В ) наступит, если, например, первые две детали окажутся стандартными, а следующие три – нестандартными. Но событие В также наступит, если первая и третья детали окажутся стандартными, а остальные – нестандартными, или если вторая и пятая детали будут стандартными, а остальные – нестандартными. Имеются и другие возможности наступления события В . Любая из них характеризуется тем, что из пяти взятых деталей две, занимающие любые места из пяти, окажутся стандартными. Следовательно, общее число различных возможностей наступления события В равно числу возможностей размещения на пяти местах двух стандартных деталей, т.е. равно числу сочетаний из пяти элементов по два, а .

Вероятность каждой возможности по теореме умножения вероятностей равна произведению пяти множителей, из которых два, соответствующие появлению стандартных деталей, равны 0,9, а остальные три, соответствующие появлению нестандартных деталей, равны 0,1, т.е. эта вероятность составляет . Так как указанные десять возможностей являются несовместимыми событиями, по теореме сложения вероятность события В , которую обозначим

Пример 2. Вероятность того, что станок в течение часа потребует внимания рабочего, равна 0,6. Предполагая, что неполадки на станках независимы, найти вероятность того, что в течение часа внимания рабочего потребует какой-либо один станок из четырёх обслуживаемых им.

Решение. Используя формулу Бернулли при n =4 , m =1 , p =0,6 и q =1–p =0,4 , получим

Пример 3. Для нормальной работы автобазы на линии должно быть не менее восьми автомашин, а их имеется десять. Вероятность невыхода каждой автомашины на линию равна 0,1. Найти вероятность нормальной работы автобазы в ближайший день.

Решение. Автобаза будет работать нормально (событие F ), если на линию выйдут или восемь (событие А ), или девять (событие В ), или все десять автомашин событие (событие C ). По теореме сложения вероятностей,

Каждое слагаемое находим по формуле Бернулли . Здесь n =10 , m =8; 9; 10 , а p =1-0,1=0,9 , так как p должно означать вероятность выхода автомашины на линию; тогда q =0,1 . В результате получим

Пример 4. Пусть вероятность того, что покупателю необходима мужская обувь 41-го размера, равна 0,25. Найти вероятность того, что из шести покупателей по крайней мере двум необходима обувь 41-го размера.