Анатомия тема клетка. Клеточное строение организма. Полные уроки — Гипермаркет знаний. Структурная организация эукариотической клетки

Клетка – элементарная единица живой системы. Различные структуры живой клетки, которые отвечают за выполнение той или иной функции, получили название органоидов, подобно органам целого организма. Специфические функции в клетке распределены между органоидами, внутриклеточными структурами, имеющими определенную форму, такими, как клеточное ядро, митохондрии и др.

Клеточные структуры:

Цитоплазма . Обязательная часть клетки, заключенная между плазматической мембраной и ядром. Цитозоль – это вязкий водный раствор различных солей и органических веществ, пронизанный системой белковых нитей – цитоскелетам. Большинство химических и физиологических процессов клетки проходят в цитоплазме. Строение: Цитозоль, цитоскелет. Функции: включает различные органоиды, внутренняя среда клетки
Плазматическая мембрана . Каждая клетка животных, растений, ограничена от окружающей среды или других клеток плазматической мембраной. Толщина этой мембраны так мала (около 10 нм.), что ее можно увидеть только в электронный микроскоп.

Липиды в мембране образуют двойной слой, а белки пронизывают всю ее толщину, погружены на разную глубину в липидный слой или располагаются на внешней и внутренней поверхности мембраны. Строение мембран всех других органоидов сходно с плазматической мембраной. Строение: двойной слой липидов, белки, углеводы. Функции: ограничение , сохранение формы клетки, защита от повреждений, регулятор поступления и удаления веществ.

Лизосомы . Лизосомы – это мембранные органоиды. Имеют овальную форму и диаметр 0,5 мкм. В них находится набор ферментов, которые разрушают органические вещества. Мембрана лизосом очень прочная и препятствует проникновению собственных ферментов в цитоплазму клетки, но если лизосома повреждается от каких-либо внешних воздействий, то разрушается вся клетка или часть ее.
Лизосомы встречаются во всех клетках растений, животных и грибов.

Осуществляя переваривание различных органических частиц, лизосомы обеспечивают дополнительным «сырьем» химические и энергетические процессы в клетке. При голодании клетки лизосомы переваривают некоторые органоиды, не убивая клетку. Такое частичное переваривание обеспечивает клетке на какое-то время необходимый минимум питательных веществ. Иногда лизосомы переваривают целые клетки и группы клеток, что играет существенную роль в процессах развития у животных. Примером может служить утрата хвоста при превращении головастика в лягушку. Строение: пузырьки овальной формы, снаружи мембрана, внутри ферменты. Функции: расщепление органических веществ, разрушение отмерших органоидов, уничтожение отработавших клеток.

Комплекс Гольджи . Поступающие в просветы полостей и канальцев эндоплазматической сети продукты биосинтеза концентрируются и транспортируются в аппарате Гольджи. Этот органоид имеет размеры 5–10 мкм.

Строение : окруженные мембранами полости (пузырьки). Функции: накопление, упаковка, выведение органических веществ, образование лизосом

Эндоплазматическая сеть
. Эндоплазматическая сеть является системой синтеза и транспорта органических веществ в цитоплазме клетки, представляющая собой ажурную конструкцию из соединенных полостей.
К мембранам эндоплазматической сети прикреплено большое число рибосом – мельчайших органоидов клетки, имеющих вид сферы с диаметром 20 нм. и состоящих из РНК и белка. На рибосомах и происходит синтез белка. Затем вновь синтезированные белки поступают в систему полостей и канальцев, по которым перемещаются внутри клетки. Полости, канальцы, трубочки из мембран, на поверхности мембран рибосомы. Функции: синтез органических веществ с помощью рибосом, транспорт веществ.

Рибосомы
. Рибосомы прикреплены к мембранам эндоплазматической сети или свободно находятся в цитоплазме, они располагаются группами, на них синтезируются белки. Состав белка, рибосомальная РНК Функции: обеспечивает биосинтез белка (сборку белковой молекулы из ).
Митохондрии . Митохондрии – это энергетические органоиды. Форма митохондрий различна, они могут быть остальными, палочковидными, нитевидными со средним диаметром 1 мкм. и длиной 7 мкм. Число митохондрий зависит от функциональной активности клетки и может достигать десятки тысяч в летательных мышцах насекомых. Митохондрии снаружи ограничены внешней мембраной, под ней – внутренняя мембрана, образующая многочисленные выросты – кристы.

Внутри митохондрий находятся РНК, ДНК и рибосомы. В ее мембраны встроены специфические ферменты, с помощью которых в митохондрии происходит преобразование энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целом.

Мембрана, матрикс, выросты – кристы. Функции: синтез молекулы АТФ, синтез собственных белков, нуклеиновых кислот, углеводов, липидов, образование собственных рибосом.

Пластиды
. Только в растительной клетке: лекопласты, хлоропласты, хромопласты. Функции: накопление запасных органических веществ, привлечение насекомых-опылителей, синтез АТФ и углеводов. Хлоропласты по форме напоминают диск или шар диаметром 4–6 мкм. С двойной мембраной – наружней и внутренней. Внутри хлоропласта имеются ДНК рибосомы и особые мембранные структуры – граны, связанные между собой и с внутренней мембраной хлоропласта. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке для лучшего улавливания света. В мембранах гран находится хлорофилл, благодаря ему происходит превращение энергии солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза органических соединений, в первую очередь углеводов.
Хромопласты . Пигменты красного и желтого цвета, находящиеся в хромопластах, придают различным частям растения красную и желтую окраску. моркови, плоды томатов.

Лейкопласты являются местом накопления запасного питательного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут превращаться в хлоропласты (в результате чего клетки картофеля зеленеют). Осенью хлоропласты превращаются в хромопласты и зеленые листья и плоды желтеют и краснеют.

Клеточный центр . Состоит из двух цилиндров, центриолей, расположенных перпендикулярно друг другу. Функции: опора для нитей веретена деления

Клеточные включения то появляются в цитоплазме, то исчезают в процессе жизнедеятельности клетки.

Плотные, в виде гранул включения содержат запасные питательные вещества (крахмал, белки, сахара, жиры) или продукты жизнедеятельности клетки, которые пока не могут быть удалены. Способностью синтезировать и накапливать запасные питательные вещества обладают все пластиды растительных клеток. В растительных клетках накопление запасных питательных веществ происходит в вакуолях.

Зерна, гранулы, капли
Функции: непостоянные образования, запасающие органические вещества и энергию

Ядро
. Ядерная оболочка из двух мембран, ядерный сок, ядрышко. Функции: хранение наследственной информации в клетке и ее воспроизводство, синтез РНК – информационной, транспортной, рибосомальной. В ядерной мембране находятся споры, через них осуществляется активный обмен веществами между ядром и цитоплазмой. В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать к ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. В ядре присутствует ядрышко. Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.

Клеточная мембрана . Клетка (рис. 1.1) как живая система нуждается в поддержании определенных внутренних условий: концентрации различных веществ, температуры внутри клетки и др. Одни из этих параметров поддерживаются на неизменном уровне, так как их изменение приведет к гибели клетки, другие играют меньшее значение для сохранения ее жизнедеятельности.

Рис. 1.1.

Клеточная мембрана должна обеспечивать отграничение содержимого клетки от окружающей среды для поддержания необходимой концентрации веществ внутри клетки, в то же время она должна быть проницаемой для постоянного обмена веществ между клеткой и средой (рис. 1.2). Мембраны также ограничивают внутренние структуры клетки - органоиды (органеллы) - от цитоплазмы. Однако эго не просто разделительные барьеры. Клеточные мембраны сами по себе являются важнейшим органом клетки, обеспечивающим не только ее структуру, но и многие функции. Помимо разделения клеток между собой и отграничения от внешней среды мембраны объединяют клетки в ткани, регулируют обмен между клеткой и внешней средой, сами являются местом протекания многих биохимических реакций, служат передатчиками информации между клетками.

По современным данным, плазматические мембраны - это липопротеиновые структуры (липопротеины - соединения белковых и жировых молекул). Липиды (жиры) спонтанно образуют двойной слой, а мембранные белки «плавают» в нем, словно острова в океане. В мембранах присутствуют несколько тысяч различных белков: структурные, переносчики, ферменты и др. Кроме того, между белковыми молекулами имеются поры, сквозь которые могут проходить некоторые вещества. К поверхности мембраны подсоединены специальные гликозильные группы, которые участвуют в процессе распознавания клеток при образовании тканей.


Рис. 1.2.

Разные типы мембран отличаются по своей толщине (обычно она составляет от 5 до 10 нм). По консистенции мембраны напоминают оливковое масло. Важнейшее свойство клеточной мембраны - полупроницаемость », т.е. способность пропускать только определенные вещества. Прохождение различных веществ через плазматическую мембрану необходимо для доставки питательных веществ и кислорода в клетку, вывода токсичных отходов, создания разницы концентрации отдельных микроэлементов для поддержания нервной и мышечной активности. Механизмы транспорта веществ через мембрану:

  • диффузия - газы, жирорастворимые молекулы проникают прямо через плазматическую мембрану, в том числе облегченная диффузия, когда растворимое в воде вещество проходит через мембрану по особому каналу;
  • осмос - диффузия воды через полунепроницаемые мембраны в сторону более низкой концентрации ионов;
  • активный транспорт - перенос молекул из области с меньшей концентрацией в область с большей с помощью специальных транспортных белков;
  • эндоцитоз - перенос молекул с помощью пузырьков (вакуолей), образуемых втягиванием мембраны; различают фагоцитоз (поглощение твердых частиц) и ниноцитоз (поглощение жидкостей) (рис. 1.3);
  • экзоцитоз - процесс, обратный эндоцитозу; посредством него из клеток могут выводиться твердые частицы и жидкий секрет (рис. 1.4).

Диффузия и осмос не требуют дополнительной энергии; активный транспорт, эндоцитоз и экзоцитоз нуждаются в обеспечении энергией, которую клетка получает при расщеплении усвоенных ею питательных веществ.


Рис. 1.3.


Рис. 1.4.

Регуляция прохождения различных веществ через плазматическую мембрану является одной из ее важнейших функций. В зависимости от внешних условий структура мембраны может изменяться: она может становиться более жидкой, активной и проницаемой. Регулятором проницаемости мембран является жироподобное вещество холестерол.

Внешняя структура клетки поддерживается более плотной структурой - клеточной оболочкой. Клеточная оболочка может иметь самое различное строение (быть эластичной, иметь жесткий каркас, щетинки, усики и др.) и выполнять достаточно сложные функции.

Ядро имеется во всех клетках человеческого организма, за исключением эритроцитов. Как правило, клетка содержит только одно ядро, однако есть и исключения - например, клетки поперечнополосатых мышц содержат множество ядер. Ядро имеет шаровидную форму, его размеры колеблются от 10 до 20 мкм (рис. 1.5).

Ядро отграничено от цитоплазмы ядерной оболочкой , состоящей из двух мембран - наружной и внутренней, аналогичных клеточной мембране, и узкой щели между ними, содержащей полужидкую среду; через поры ядерной оболочки осуществляется интенсивный обмен веществ между ядром и цитоплазмой. На внешней мембране оболочки расположено множество рибосом - органоидов, синтезирующих белок.

Под ядерной оболочкой находится кариоплазма (ядерный сок), в которую поступают вещества из цитоплазмы. Кариоплазма содержит хромо го сомы (продолговатые структуры, содержащие ДНК, в которых «записана» информация о строении белков, специфичных для данной клетки, - наследственная, или генетическая, информация) и ядрышки (округлые структуры внутри ядра, в которых происходит формирование рибосом).

Рис. 1.5.

Совокупность хромосом, содержащихся в ядре, называют хромосомным набором. Число хромосом в соматических клетках четное - диплоидное (у человека это 44 аутосомы и 2 половые хромосомы, определяющие половую принадлежность), половые клетки, участвующие в оплодотворении, несут половинный набор (у человека 22 аутосомы и 1 половая хромосома) (рис. 1.6).

Рис. 1.6.

Важнейшей функцией ядра является передача генетической информации дочерним клеткам: при делении клетки ядро делится надвое, а находящаяся в нем ДЫК копируется (репликация ДНК) - это позволяет каждой дочерней клетке иметь полную информацию, полученную от исходной (материнской) клетки (см. Размножение клеток).

Цитоплазма (цитозоль) - студенистое вещество, содержащее около 90% воды, в котором расположены все органоиды, содержатся истинные и коллоидные растворы питательных веществ и нерастворимые отходы метаболических процессов, протекают биохимические процессы: гликолиз, синтез жирных кислот, нуклеиновых кислот и других веществ. Органоиды в цитоплазме движутся, цитоплазма сама также совершает периодическое активное движение - циклоз.

Клеточные структуры (органоиды , или органеллы) представляют собой «внутренние органы» клетки (табл. 1.1). Они обеспечивают процессы жизнедеятельности клетки, выработку клеткой определенных веществ (секрета, гормонов, ферментов), от их жизнедеятельности зависит общая активность тканей организма, способность выполнять специфические для данной ткани функции. Структуры клетки, как и сама клетка, проходят свои жизненные циклы: рождаются (создаются путем воспроизводства), активно функционируют, стареют и разрушаются. Большинство клеток организма способно восстанавливаться на субклеточном уровне за счет воспроизводства и обновления входящих в ее структуру органоидов.

Таблица 1.1

Клеточные органоиды, их строение и функции

Органоиды

Строение

Цитоплазма

Заключена в наружную мембрану, включает различные органоиды. Представлена коллоидным раствором солей и органических веществ, пронизана цитоскелетом (системой белковых нитей)

Объединяет все клеточные структуры в единую систему, обеспечивает среду для протекания биохимических реакций, обмен веществами и энергией в клетке

Наружная

клеточная

мембрана

Два слоя мономолекулярного белка, между которыми расположен бимолекулярный слой липидов, в липидном слое имеются отверстия - поры

Ограничивает клетку, разделяет ее с окружающей средой, обладает избирательной проницаемостью, активно регулирует обмен веществ и энергии с внешней средой, отвечает за соединение клеток в ткани, обеспечивает пиноцитоз и фагоцитоз; регулирует водный баланс клетки и выводит из нее «шлаки» - продукты жизнедеятельности

Эндоплазматическая сеть (ЭС)

Система трубочек, канальцев, цистерн, пузырьков, образованных ультрамикроскопичсскими мембранами, объединенная в единое целое с наружной мембраной

Транспорт веществ внутри клетки и между соседними клетками; разделение клетки на секторы, в которых могут проходить различные процессы.

Окончание табл. 1.1

Органоиды

Строение

ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭС несет рибосомы, гладкая не имеет рибосом

Гранулярная ЭС участвует в синтезе белка. В каналах ЭС происходит синтез белка, жиров, транспорт АТФ

Рибосомы

Маленькие сферические органоиды, состоящие из РНК и белка

Осуществляют синтез белка

Микроскопические одномембранные органеллы, состоящие из стопочки

плоских цистерн, по краям которых ответвляются трубочки, отделяющие мелкие пузырьки

В пузырьках накапливаются продукты обменных процессов клетки. Упакованные в пузырьки, они поступают в цитоплазму и либо используются, либо выводятся наружу как шлаки

Л изосомы

Одномембраиные органоиды, число которых зависит от жизнедеятельности клетки. В лизосомах содержатся ферменты, образованные в рибосомах

Переваривание питательных веществ. Защитная функция. Автолиз (саморастворение орга- нелл и самой клетки в условиях пищевого или кислородного голодания)

Биология клетки в общих чертах известна каждому из школьной программы. Предлагаем вам вспомнить изученное когда-то, а также открыть для себя что-то новое о ней. Название "клетка" было предложено еще в 1665 году англичанином Р. Гуком. Однако лишь в 19 веке ее начали изучать систематически. Ученых заинтересовала, среди прочего, и роль клетки в организме. Они могут быть в составе множества различных органов и организмов (икринок, бактерий, нервов, эритроцитов) или же быть самостоятельными организмами (простейшими). Несмотря на все их многообразие, в функциях и строении их обнаруживается много общего.

Функции клетки

Все они различны по форме и зачастую по функциям. Могут отличаться довольно сильно и клетки тканей и органов одного организма. Однако биология клетки выделяет функции, которые присущи всем их разновидностям. Именно здесь всегда происходит синтез белков. Этот процесс контролируется Клетка, которая не синтезирует белки, в сущности мертва. Живая клетка - это та, компоненты которой все время меняются. Однако основные классы веществ при этом остаются неизменными.

Все процессы в клетке осуществляются с использованием энергии. Это питание, дыхание, размножение, обмен веществ. Поэтому живая клетка характеризуется тем, что в ней все время происходит энергетический обмен. Каждая из них обладает общим важнейшим свойством - способностью запасать энергию и тратить ее. Среди других функций можно отметить деление и раздражимость.

Все живые клетки могут реагировать на химические или физические изменения среды, окружающей их. Это свойство называется возбудимостью или раздражимостью. В клетках при возбуждении меняется скорость распада веществ и биосинтеза, температура, потребление кислорода. В таком состоянии они выполняют функции, свойственные им.

Строение клетки

Ее строение довольно сложно, хотя она считается самой простой формой жизни в такой науке, как биология. Клетки расположены в межклеточном веществе. Оно обеспечивает им дыхание, питание и механическую прочность. Ядро и цитоплазма - основные составные части каждой клетки. Каждая из них покрыта мембраной, строительный элемент для которой - молекула. Биология установила, что мембрана состоит из множества молекул. Они расположены в несколько слоев. Благодаря мембране вещества проникают избирательно. В цитоплазме находятся органоиды - мельчайшие структуры. Это эндоплазматическая сеть, митохондрии, рибосомы, клеточный центр, комплекс Гольджи, лизосомы. Вы лучше поймете, как выглядят клетки, изучив рисунки, представленные в этой статье.

Мембрана

Эндоплазматическая сеть

Этот органоид был назван так из-за того, что он находится в центральной части цитоплазмы (с греческого языка слово "эндон" переводится как "внутри"). ЭПС - очень разветвленная система пузырьков, трубочек, канальцев различной формы и величины. Они отграничены от мембранами.

Различаются два вида ЭПС. Первый - гранулярная, которая состоит из цистерн и канальцев, поверхность которых усеяна гранулами (зернышками). Второй вид ЭПС - агранулярная, то есть гладкая. Гранами являются рибосомы. Любопытно, что в основном гранулярная ЭПС наблюдается в клетках зародышей животных, тогда как у взрослых форм она обычно агранулярная. Как известно, рибосомы являются местом синтеза белка в цитоплазме. Исходя из этого, можно сделать предположение, что гранулярная ЭПС бывает преимущественно в клетках, где происходит активный синтез белка. Агранулярная сеть, как считается, представлена в основном в тех клетках, где протекает активный синтез липидов, то есть жиров и различных жироподобных веществ.

И тот и другой вид ЭПС не просто принимает участие в синтезе органических веществ. Здесь эти вещества накапливаются, а также транспортируются к необходимым местам. ЭПС также регулирует обмен веществ, который происходит между окружающей средой и клеткой.

Рибосомы

Митохондрии

К энергетическим органоидам относятся митохондрии (на фото выше) и хлоропласты. Митохондрии - это своеобразные энергетические станции каждой клетки. Именно в них извлекается энергия из питательных веществ. Митохондрии имеют изменчивую форму, однако чаще всего это гранулы или нити. Число и размеры их непостоянны. Это зависит от того, какова функциональная активность той или иной клетки.

Если рассмотреть электронную микрофотографию, можно заметить, что митохондрии имеют две мембраны: внутреннюю и наружную. Внутренняя образует выросты (кристы), устланные ферментами. Благодаря наличию крист общая поверхность митохондрий увеличивается. Это важно для того, чтобы деятельность ферментов протекала активно.

В митохондриях ученые обнаружили специфические рибосомы и ДНК. Это позволяет этим органоидам самостоятельно размножаться в процессе деления клетки.

Хлоропласты

Что касается хлоропластов, то по форме это диск или шар, имеющий двойную оболочку (внутреннюю и наружную). Внутри этого органоида также имеются рибосомы, ДНК и граны - особые мембранные образования, связанные как с внутренней мембраной, так и между собой. Хлорофилл находится именно в мембранах гран. Благодаря ему энергия солнечного света превращается в химическую энергию аденозинтрифосфат (АТФ). В хлоропластах она используется для синтеза углеводов (образуются из воды и углекислого газа).

Согласитесь, представленную выше информацию нужно знать не только для того, чтобы сдать тест по биологии. Клетка - это строительный материал, из которого состоит наш организм. Да и вся живая природа - сложная совокупность клеток. Как вы видите, в них выделяется множество составных частей. На первый взгляд может показаться, что изучить строение клетки - непростая задача. Однако если разобраться, эта тема не так уж и сложна. Ее необходимо знать, чтобы хорошо разбираться в такой науке, как биология. Состав клетки - одна из основополагающих ее тем.

Клетки – это микроскопические живые элементы, из которых, как здание из кирпичиков, состоит человеческое тело . Их очень много – для образования организма новорожденного клеток требуется около двух триллионов!

Клетки бывают различных типов или видов, например, нервные клетки или клетки печени, но каждая из них содержит информацию, необходимую для возникновения и нормальной работы организма человека.

Строение клетки человека

Строение всех клеток тела человека практически одинаково. Каждая живая клетка состоит из защитной оболочки (она называется мембраной), которая окружает желеобразную массу – цитоплазму. В цитоплазме плавают мелкие органы или компоненты клетки – органеллы, и содержится «командный пункт» или «центр управления» клетки – её ядро. Именно в ядре заключена информация, необходимая для нормальной жизнедеятельности клетки и «инструкции», на выполнении которых основана её работа.

Деление клеток

Ежесекундно организм человека обновляется, в нём отмирают и рождаются, замещая друг друга, миллионы клеток. Например, замещение старых клеток кишечника новыми происходит со скоростью миллион в минуту. Каждая новая клетка возникает в результате деления уже существующей, и процесс этот можно разделить на три этапа:
1. Перед началом деления клетка копирует содержащуюся в ядре информацию;
2. Потом на две части делится ядро клетки, а затем цитоплазма;
3. В результате деления получаются две новые клетки, являющиеся точными копиями клетки-матери.

Виды и внешний вид клеток человеческого организма

Несмотря на одинаковое строение, клетки человека отличаются по форме и размеру, в зависимости от функций, которые они выполняют. С помощью электронного микроскопа учёные выяснили, что клетки могут иметь форму параллелепипеда (например, клетки эпидермиса), шара (кровяные), звёздочки и даже проводов (нервные), а всего их около 200 видов.

Клетка является наименьшей и основной структурной единицей живых организмов, способной к самообновлению, саморегуляции и самовоспроизведению.

Характерные размеры клеток: клетки бактерий — от 0,1 до 15 мкм, клетки других организмов — от 1 до 100 мкм, иногда достигают 1-10 мм; яйцеклетки крупных птиц — до 10-20 см, отростки нервных клеток — до 1 м.

Форма клеток весьма разнообразна: существуют шаровидные клетки (кокки) , цепочечные (стрептококки) , вытянутые (палочки, или бациллы) , изогнутые (вибрионы) , извитые (спириллы) , многогранные, с двигательными жгутиками и др.

Виды клеток: прокариотические (безъядерные) и эукариотические (имеющие оформленное ядро).

Эукариотические клетки, в свою очередь, подразделяются на клетки животных, растений и грибов.

Структурная организация эукариотической клетки

Протопласт — это все живое содержимое клетки. Протопласт всех эукариотических клеток состоит из цитоплазмы (со всеми органоидами) и ядра.

Цитоплазма — это внутреннее содержимое клетки за исключением ядра, состоящее из гиалоплазмы, погруженных в нее орга-иелл и (в некоторых типах клеток) внутриклеточных включений (запасных питательных веществ и/или конечных продуктов обмена).

Гиалоплазма — основная плазма, матрикс цитоплазмы, основное вещество, являющееся внутренней средой клетки и представляющее собой вязкий бесцветный коллоидный раствор (содержание воды до 85%) различных веществ: белков (10%), сахаров, органических и неорганических кислот, аминокислот, полисахаридов, РНК, липидов, минеральных солей и т.п.

■ Гиалоплазма является средой для внутриклеточных реакций обмена и связующим звеном между органеллами клетки; она способна к обратимым переходам из золя в гель, ее состав определяет буферные и осмотические свойства клетки. В цитоплазме находится цитоскелет, состоящий из микротрубочек и способных сокращаться белковых нитей.

■ Цитоскелет определяет форму клетки и участвует во внутриклеточном перемещении органоидов и отдельных веществ. Ядро — самый крупный органоид эукариотической клетки, содержащий хромосомы, в которых хранится вся наследственная информация (подробнее см. ниже).

Структурные компоненты эукариотической клетки:

■ плазмалемма (плазматическая мембрана),
■ клеточная стенка (только у клеток растений и грибов),
■ биологические (элементарные) мембраны,
■ ядро,
■ эндоплазматическая сеть (эндоплазматический ретикулум),
■ митохондрии,
■ комплекс Гольджи,
■ хлоропласты (только у клеток растений),
■ лизосомы, s
■ рибосомы,
■ клеточный центр,
■ вакуоли (только у клеток растений и грибов),
■ микротрубочки,
■ реснички, жгутики.

Схемы строения животной и растительной клеток приведены ниже:

Биологические (элементарные) мембраны — это активные молекулярные комплексы, разделяющие внутриклеточные органоиды и клетки. Все мембраны имеют сходное строение.

Структура и состав мембран: толщина 6-10 нм; состоят в основном из молекул белков и фосфолипидов.

Фосфолипиды образуют двойной (бимолекулярный) слой, в котором их молекулы обращены своими гидрофильными (водорастворимыми) концами наружу, а гидрофобными (водонерастворимыми) концами — внутрь мембраны.

Белковые молекулы располагаются на обеих поверхностях двойного липидного слоя (периферические белки ), пронизывают оба слоя молекул липидов (интегральные белки, большая часть которых — ферменты) или только один их слой (полуинтегральные белки).

Свойства мембран: пластичность, асимметрия (состав наружного и внутреннего слоев и липидов, и белков различен), полярность (внешний слой заряжен положительно, внутренний — отрицательно), способность самозамыкаться, избирательная проницаемость (при этом гидрофобные вещества проходят через двойной липидный слой, а гидрофильные — через поры в интегральных белках).

Функции мембран: барьерная (отделяет содержимое органоида или клетки от окружающей среды), структурная (обеспсчнило определенную форму, размеры и устойчивость органоида или клетки), транспортная (обеспечивает транспорт веществ в органоид или клетку и из нее), каталитическая (обеспечивает примембранные биохимические процессы), регулятивная (участвует в регуляции обмена веществ и энергии между органоидом или клеткой и внешней средой), участвует в преобразовании энергии и поддержании трансмембранного электрического потенциала.

Плазматическая мембрана (плазмалемма)

Плазматическая мембрана , или плазмалемма, — это биологическая мембрана или комплекс плотно прилегающих друг к другу биологических мембран, покрывающих клетку с внешней стороны.

Строение, свойства и функции плазмалеммы в основном такие же, как и у элементарных биологических мембран.

❖ Особенности строения:

■ наружная поверхность плазмалеммы содержит гликокаликс — полисахаридный слой молекул гликолипоидов и гликопротеидов, служащих рецепторами для «узнавания» определенных химических веществ; у животных клеток она может быть покрыта слизью или хитином, а у растительных клеток — целлюлозой или пектиновыми веществами;

■ обычно плазмалемма образует выросты, впячивания, складки, микроворсинки и др., увеличивающие поверхность клетки.

Дополнительные функции: рецепторная (участвует в «узнавании» веществ и в восприятии сигналов из окружающей среды и передаче их в клетку), обеспечение связи между клетками в тканях многоклеточного организма, участие в построении специальных структур клетки (жгутиков, ресничек и др.).

Клеточная стенка (оболочка)

Клеточная стенка — это жесткая структура, расположенная снаружи плазмалеммы и представляющая собой внешний покров клетки. Присутствует у прокариотических клеток и клеток грибов и растений.

Состав клеточной стенки: целлюлоза у клеток растений и хитин у клеток грибов (структурные компоненты), белки, пектины (которые участвуют в образовании пластинок, скрепляющих стенки двух соседних клеток), лигнин (скрепляющий целлюлозные волокна в очень прочный каркас), суберин (откладывается на оболочку изнутри и делает ее практически непроницаемой для воды и растворов) и др. Наружная поверхность клеточной стенки эпидермальных клеток растений содержит большое количество карбоната кальция и кремнезема (минерализация) и покрыта гидрофобными веществами восками и кутикулой (слоем вещества кутина, пронизанным целлюлозой и пектинами).

Функции клеточной стенки: служит внешним каркасом, поддерживает тургор клеток, выполняет защитную и транспортную функции.

Органеллы клетки

Органеллы (или органоиды) — это постоянные высокоспециализированные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции.

По назначению органеллы подразделяются на:
■ органеллы общего назначения (митохондрии, комплекс Гольджи, эндоплазматическая сеть, рибосомы, центриоли, лизосомы, пластиды) и
■ органеллы специального назначения (миофибриллы, жгутики, реснички, вакуоли).
По наличию мембраны органеллы подразделяются на:
■ двумембранные (митохондрии, пластиды, клеточное ядро),
■ одномембранные (эндоплазматическая сеть, комплекс Гольджи, лизосомы, вакуоли) и
■ немембранные (рибосомы, клеточный центр).
Внутреннее содержимое мембранных органелл всегда отличается р.т окружающей их гиалоплазмы.

Митохондрии — двумембранные органеллы эукариотических клеток, осуществляющие окисление органических веществ до конечных продуктов с освобождением энергии, запасаемой в молекулах АТФ.

Строение: палочковидная, шаровидная и нитевидная формы, толщина 0,5-1 мкм, длина 2-7 мкм; двумембранные, наружная мембрана гладкая и имеет высокую проницаемость, внутренняя мембрана образует складки — кристы, на которых находятся тельца сферической формы — АТФ-сомы. В пространстве между мембранами скапливаются ионы водорода 11 , участвующие в кислородном дыхании.

Внутреннее содержимое (матрикс): рибосомы, кольцевые ДНК, РНК, аминокислоты, белки, ферменты цикла Кребса, ферменты тканевого дыхания (находятся на кристах).

Функции: окисление веществ до СO 2 и Н 2 O; синтез АТФ и специфических белков; образование новых митохондрий в результате деления надвое.

Пластиды (имеются только у клеток растений и автотрофных протистов).

Виды пластид: хлоропласты (зеленые), лейкопласты (бесцветные округлой формы), хромопласты (желтые или оранжевые); пластиды могут превращаться из одного вида в другой.

Строение хлоропластов: они двумембранные, имеют округлую или овальную форму, длина 4-12 мкм, толщина 1-4 мкм. Наружная мембрана гладкая, на внутренней имеются тилакоиды — складки, образующие замкнутые дисковидные впячивания, между которыми находится строма (см. ниже). У высших растений тилакоиды собраны в стопки (наподобие столбика монет) граны , которые соединены друг с другом ламеллами (одиночными мембранами).

Состав хлоропластов: в мембранах тилакоидов и гран — зерна хлорофилла и других пигментов; внутреннее содержимое (строма): белки, липиды, рибосомы, кольцевые ДНК, РНК, ферменты, участвующие в фиксации СO 2 , запасные вещества.

Функции пластид: фотосинтез (хлоропласты, содержащиеся в зеленых органах растений), синтез специфических белков и накопление запасных питательных веществ: крахмала, белков, жиров (лейкопласты), придание окраски тканям растений с целью привлечения насекомых-опылителей и распространителей плодов и семян (хромопласты).

Эндоплазматическая сеть (ЭПС ), или эндоплазматический ретикулум, имеется во всех эукариотических клетках.

Строение: представляет собой систему соединенных между собой канальцев, трубочек, цистерн и полостей различной формы и размеров, стенки которых образованы элементарными (одинарными) биологическими мембранами. Различают два типа ЭПС: гранулярную (или шероховатую), содержащую рибосомы на поверхности каналов и полостей, и агранулярную (или гладкую), не содержащую рибосом.

Функции: разделение цитоплазмы клетки на отсеки, препятствующие смешению происходящих в них химических процессов; шероховатая ЭПС накапливает, изолирует для созревания и транспортирует,белки, синтезированные рибосомами на ее поверхности, синтезирует мембраны клетки; гладкая ЭПС синтезирует и транспортирует липиды, сложные углеводы и стероидные гормоны, выводит из клетки ядовитые вещества.

Комплекс (или аппарат) Гольджи — мембранная органелла эукариотической клетки, расположенная вблизи клеточного ядра, представляющая собой систему цистерн и пузырьков и участвующая в накоплении, хранении и транспортировке веществ, построении клеточной оболочки и образовании лизосом.

Строение: комплекс представляет собой диктиосому — стопку ограниченных мембраной плоских дисковидных мешочков {цистерн), от которых отпочковываются пузырьки, и систему мембранных трубочек, связывающих комплекс с каналами и полостями гладкой ЭПС.

Функции: образование лизосом, вакуолей, плазмалеммы и клеточной стенки растительной клетки (после ее деления), секреция ряда комплексных органических веществ (пектиновых веществ, целлюлозы и др. у растений; гликопротеинов, гликолипидов, коллагена, белков молока, желчи, ряда гормонов и др. у животных); накопление и обезвоживание транспортированных по ЭПС липидов (из гладкой ЭПС), доработка и накопление белков (из гранулярной ЭПС и свободных рибосом цитоплазмы) и углеводов, выведение веществ из клетки.

Зрелые цистерны диктиосомы отшнуровывают пузырьки (вакуоли Гольджи) , заполненные секретом, который затем либо используется самой клеткой, либо выводится за ее пределы.

Лизосомы — клеточные органеллы, обеспечивающие расщепление сложных молекул органических веществ; образуются из пузырьков, отделяющихся от комплекса Гольджи или гладкой ЭПС, и присутствуют во всех эукариотических клетках.

Строение и состав: лизосомы — это небольшие одномембранные пузырьки округлой формы диаметром 0,2-2 мкм; заполнены гидролитическими (пищеварительными) ферментами (~40), способными расщеплять белки (до аминокислот), липиды (до глицерина и высших карбоновых кислот), полисахариды (до моносахаридов) и нуклеиновые кислоты (до нуклеотидов).

Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (или вторичную лизосому), где и происходит расщепление сложных органических веществ; полученные мономеры через мембрану вторичной лизосомы поступают в цитоплазму клетки, а непереваренные (негидролизуемые) вещества остаются во вторичной лизосоме и затем, как правило, выводятся за пределы клетки.

Функции: гетерофагия — расщепление чужеродных веществ, поступивших в клетку путем эндоцитоза, аутофагия — уничтожение ненужных клетке структур; автолиз — саморазрушение клетки, происходящее в результате освобождения содержимого лизосом при гибели или перерождении клетки.

❖ Вакуоли — крупные пузырьки или полости в цитоплазме, образующиеся в клетках растений, грибов и многих протистов и ограниченные элементарной мембраной -тонопластом.

■ Вакуоли протистов подразделяют на пищеварительные и сократительные (имеющие в мембранах пучки эластичных волокон и служащие для осмотической регуляции водного баланса клетки).

■Вакуоли растительных клеток заполнены клеточным соком — водным раствором различных органических и неорганических веществ. В них также могут находиться ядовитые и дубильные вещества и конечные продукты жизнедеятельности клеток.

■Вакуоли растительных клеток могут сливаться в центральную вакуоль, которая занимает до 70-90% объема клетки и может быть пронизана тяжами цитоплазмы.

Функции: накопление и изоляция запасных веществ и веществ, предназначенных для экскреции; поддержание тургор-ного давления; обеспечение роста клетки за счет растяжения; регуляция водного баланса клетки.

♦Рибосомы — органеллы клетки, присутствующие во всех клетках (в количестве нескольких десятков тысяч), расположенные на мембранах гранулярной ЭПС, в митохондриях, хлоропластах, цитоплазме и наружной ядерной мембране и осуществляющие биосинтез белков; субъединицы рибосом образуются в ядрышках.

Строение и состав: рибосомы -мельчайшие (15-35 нм) немембранные гранулы округлой и грибовидной формы; имеют два активных центра (аминоацильный и пептидильный); состоят из двух неравных субъединиц - большой (в виде полусферы с тремя выступами и каналом), которая содержит три молекулы РНК и белок, и малой (содержащей одну молекулу РНК и белок); субъединицы соединяются с помощью иона Mg+.

■ Функция: синтез белков из аминокислот.

Клеточный центр — органелла большинства клеток животных, некоторых грибов, водорослей, мхов и папоротников, расположенная (в интерфазе) в центре клетки вблизи ядра и служащая центром инициации сборки микротрубочек .

Строение: клеточный центр состоит из двух центриолей и центросферы. Каждая центриоль (рис. 1.12) имеет вид цилиндра длиной 0,3-0,5 мкм и диаметром 0,15 мкм, стенки которого образованы девятью триплетами микротрубочек, а середина заполнена однородным веществом. Центриоли расположены перпендикулярно друг другу и окружены плотным слоем цитоплазмы с радиально расходящимися микротрубочками, образующими лучистую центросферу. При делении клетки центриоли расходятся к полюсам.

■ Основные функции: образование полюсов деления клеток и ахроматиновых нитей веретена деления (или митотического веретена), обеспечивающего равноценное распределение генетического материала между дочерними клетками; в интерфазе направляет передвижение органелл в цитоплазме.

Цитоскслст клетки — это система микрофиламентов и микротрубочек , пронизывающих цитоплазму клетки, связанных с наружной цитоплазматической мембраной и ядерной оболочкой и поддерживающих форму клетки.

Микрофнламенты — тонкие, способные сокращаться нити толщиной 5-10 нм и состоящие из белков (актина, миозина и др.). Находятся в цитоплазме всех клеток и ложноножках подвижных клеток.

Функции: микрофнламенты обеспечивают двигательную активность гиалоплазмы, непосредственно участвуют в изменении формы клетки при распластывании и амебоидном движении клеток протистов, участвуют в образовании перетяжки при делении клеток животных; одни из основных элементов цитоскелета клетки.

Микротрубочки — тонкие полые цилиндры (диаметром 25 нм), состоящие из молекул белка тубулина, расположенные спиральными или прямолинейными рядами в цитоплазме эукариотических клеток.

Функции: микротрубочки образуют нити веретена деления, входят в состав центриолей, ресничек, жгутиков, участвуют во внутриклеточном транспорте; одни из основных элементов цитоскелета клетки.

Органеллы движения жгутики и реснички , присутствуют во многих клетках, но чаще встречаются у одноклеточных организмов.

Реснички — многочисленные цитоплазматические короткие (длиной 5-20 мкм) выросты на поверхности плазмалеммы. Имеются на поверхности различных видов клеток животных и некоторых растений.

Жгутики — единичные цитоплазматические выросты на поверхности клеток многих протистов, зооспор и сперматозоидов; в ~10 раз длиннее ресничек; служат для передвижения.

Строение: реснички и жгутики (рис. 1.14) состоят их микротрубочек , расположенных по системе 9×2+2 (девять двойных микротрубочек — дублетов образуют стенку, в середине расположены две одиночные микротрубочки). Дублеты способны скользить друг относительно друга, что приводит к изгибанию реснички или жгутика. В основании жгутиков и ресничек имеются базальные тельца, идентичные, по структуре центриолям.

■ Функции: реснички и жгутики обеспечивают передвижение самих клеток или окружающей их жидкости и взвешенных в ней частиц.

Включения

Включения — непостоянные (существующие временно) компоненты цитоплазмы клетки, содержание которых меняется в зависимости от функционального состояния клетки. Различают трофические, секреторные и экскреторные включения.

Трофические включения — это запасы питательных веществ (жир, крахмальные и белковые зерна, гликоген).

Секреторные включения — это продукты жизнедеятельности желез внутренней и внешней секреции (гормоны, ферменты).

Экскреторные включения — это продукты обмена веществ в клетке, подлежащие выведению из клетки.

Ядро и хромосомы

Ядро — самый крупная органелла; является обязательным компонентов всех эукариотических клеток (за исключением клеток ситовидных трубок флоэмы высших растений и зрелых эритроцитов млекопитающих). В большинстве клеток присутствует одно ядро, но существуют двух- и многоядерные клетки. Выделяют два состояния ядра: интерфазное и делящееся

Интерфазное ядро состоит из ядерной оболочки (отделяющей внутреннее содержимое ядра от цитоплазмы), ядерного матрикса (кариоплазмы), хроматина и ядрышек. Форма и размеры ядра зависят от вида организма, типа, возраста и функционального состояния клетки. Отличается высоким содержанием ДНК (15-30%) и РНК (12%).

Функции ядра: хранение и передача наследственной информации в виде неизменной структуры ДНК; регуляция (через систему белкового синтеза) всех процессов жизнедеятельности клетки.

Ядерная оболочка (или кариолемма) состоит из наружной и внутренней биологических мембран, между которыми находится перинуклеарное пространство . На внутренней мембране имеется белковая пластинка, придающая форму ядру. Наружная мембрана соединена с ЭПС и несет на себе рибосомы. Оболочка пронизана ядерными порами, через которые происходит обмен веществ между ядром и цитоплазмой. Число пор непостоянно и зависит от размеров ядра и его функциональной активности.

Функции ядерной оболочки: она отделяет ядро от цитоплазмы клетки, регулирует транспорт веществ из ядра в цитоплазму (РНК, субъединиц рибосом) и из цитоплазмы в ядро (белков, жиров, углеводов, АТФ, воды, ионов).

Хромосома — важнейшая органелла ядра, содержащая одну молекулу ДНК в комплексе со специфическими белками гистонами и некоторыми другими веществами, большая часть которых находится на поверхности хромосомы.

В зависимости от фазы жизненного цикла клетки хромосомы могут быть в двух состояниях деспирализованном и спирализованном.

» В деспирализованном состоянии хромосомы находятся в период интерфазы клеточного цикла, образуя невидимые в оптический микроскоп нити, составляющие основу хроматина .

■ Спирализация, сопровожающаяся укорачиванием и уплотнением (в 100-500 раз) нитей ДНК, происходят в процессе деления клетки ; при этом хромосомы приобретают компактную форму и становятся видимыми в оптический микроскоп.

Хроматин - один из компонентов ядерного вещества в период интерфазы, основу которого составляют деспирализованные хромосомы в виде сети длинных тонких нитей молекул ДНК в комплексе с гистонами и другими веществами (РНК, ДНК полимеразой, липидами, минеральными веществами и др.); хорошо окрашивается красителями, применяемыми в гистологической практике.

■ В хроматине участки молекулы ДНК навиваются на гистоны, образуя нуклеосомы (по виду напоминают бусы).

Хроматида — это структурный элемент хромосомы, представляющий собой нить молекулы ДНК в комплексе с белками гистонами и другими веществами, многократно сложенную как суперспираль и упакованную в виде палочковидного тельца.

■ При спирализации и упаковке отдельные участки ДНК укладываются закономерным образом так, что на хроматидах образуются чередующиеся поперечные полосы.

❖ Строение хромосомы (рис. 1.16). В спирализованном состоянии хромосома представляет собой палочковидную структуру размерами около 0,2-20 мкм, состоящую из двух хроматид и разделенную на два плеча первичной перетяжкой, называемой центромерой. Хромосомы могут иметь вторичную перетяжку, отделяющую участок, называемый спутником. У некоторых хромосом имеется участок (ядрышковый организатор ), на котором закодирована структура рибосомных РНК (р-РНК).

Типы хромосом в зависимости от их формы: равноплечие , неравноплечие (центромера смещена от середины хромосомы), палочковидные (центромера находится близко к концу хромосомы).

После анафазы митоза и анафазы мейоза II хромосомы состоят из одной хромитиды, а после репликации (удвоения) ДНК на синтетической (S) стадии интерфазы — из двух сестринских хромитид, соединенных друг с другом в области центромеры. Во время деления клетки к центромере прикрепляются микротрубочки веретена деления.

❖ Функции хромосом:
■ содержат генетический материал — молекулы ДНК;
■ осуществляют синтез ДНК (при удвоении хромосом в S-иериод клеточного цикла) и и-РНК;
■ регулируют синтез белков;
■ контролируют жизнедеятельность клетки.

Гомологичные хромосомы — хромосомы, относящиеся к одной паре, одинаковые по форме, размерам, расположению центромер, несущие одинаковые гены и определяющие развитие одних и тех же признаков. Гомологичные хромосомы могут различаться аллелями содержащихся в них генов и обмениваться участками в ходе мейоза (кроссинговер).

Аутосомы хромосомы в клетках раздельнополых организмов, одинаковые у самцов и самок одного вида (это все хромосомы клетки за исключением половых).

Половые хромосомы (или гетерохромосомы ) — это хромосомы, несущие гены, определяющие пол живого организма.

Диплоидный набор (обозначается 2п) — хромосомный набор соматической клетки, в котором каждая хромосома имеет парную ей гомологичную хромосому . Одну из хромосом диплоидного набора организм получает от отца, другую — от матери.

■ Диплоидный набор человека составляет 46 хромосом (из них 22 пары гомологичных хромосом и две половые хромосомы: у женщин две Х- хромосомы, у мужчин — по одной X- и Y- хромосоме).

Гаплоидный набор (обозначается 1л) — одинарный хромосомный набор половой клетки (гаметы ), в котором хромосомы не имеют парных гомологичных хромосом . Гаплоидный набор образуется при формировании гамет в результате мейоза, когда из каждой нары гомологичных хромосом в гамету попадает только одна.

Кариотип — это совокупность постоянных количественных и качественных морфологических признаков, характерных для хромосом соматических клеток организмов данного вида (их количество, размер и форма), по которым можно однозначно идентифицировать диплоидный набор хромосом.

Ядрышко — округлое, сильно уплотненное, не ограниченное

мембраной тельце размером 1-2 мкм. В ядре имеется одно или несколько ядрышек. Ядрышко образуется вокруг притягивающихся друг к другу ядрышковых организаторов нескольких хромосом. Во время деления ядра ядрышки разрушаются и вновь формируются в конце деления.

■ Состав: белок 70-80%, РНК 10-15%, ДНК 2-10%.
■ Функции: синтез р-РНК и т-РНК; сборка субъединиц рибосом.

Кариоплазма (или нуклеоплазма, кариолимфа, ядерный сок ) — это бесструктурная масса, заполняющая пространство между структурами ядра, в которую погружены хроматин, ядрышки, а также различные внутриядерные гранулы. Содержит воду, нуклеотиды, аминокислоты, АТФ, РНК и белки-ферменты.

Функции: обеспечивает взаимосвязи ядерных структур; участвует в транспорте веществ из ядра в цитоплазму и из цитоплазмы в ядро; регулирует синтез ДНК при репликации, синтез и-РНК при транскрипции.

Сравнительная характеристика клеток эукариот

Особенности строения прокариотической и эукариотической клеток

Транспорт веществ

Транспорт веществ — это процесс переноса необходимых веществ по организму, к клеткам, внутрь клетки и внутри клетки, а также удаление отработанных веществ из клетки и организма.

Внутриклеточный транспорт веществ обеспечивает гиалоплазма и (у клеток эукариот) эндоплазматическая сеть (ЭПС), комплекс Гольджи и микротрубочки. Транспорт веществ будет описан позже на этом сайте.

Способы транспорта веществ через биологические мембраны:

■ пассивный транспорт (осмос, диффузия, пассивная диффузия),
■ активный транспорт,
■ эндоцитоз,
■ экзоцитоз.

Пассивный транспорт не требует затрат энергии и происходит по градиенту концентрации, плотности или электрохимического потенциала.

Осмос — это проникновение воды (или иного растворителя) через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный.

Диффузия — проникновение вещества через мембрану по градиенту концентрации (из области с большей концентрацией вещества в область с меньшей концентрацией).

Диффузия воды и ионов осуществляется при участии интегральных белков мембраны, имеющих поры (каналы), диффузия жирорастворимых веществ происходит при участии липидной фазы мембраны.

Облегченная диффузия через мембрану происходит с помощью специальных мембранных белков-переносчиков, смотрите на картинке.

Активный транспорт требует затрат энергии, выделяющейся при расщеплении АТФ, и служит для переноса веществ (ионов, моносахаров, аминокислот, нуклеотидов) против градиента их концентрации или электрохимического потенциала. Осуществляется специальными белками-переносчиками пермиазами , имеющими ионные каналы и образующими ионные насосы .

Эндоцитоз — захват и обволакивание клеточной мембраной макромолекул (белков, нуклеиновых кислот и т.д.) и микроскопических твердых пищевых частиц (фагоцитоз ) или капелек жидкости с растворенными в ней веществами (пиноцитоз ) и заключение их в мембранную вакуоль, которая втягивается «внутрь клетки. Вакуоль затем сливается с лизосомой, ферменты которой расщепляют молекулы захваченного вещества до мономеров.

Экзоцитоз — процесс, обратный эндоцитозу. Посредством экзоцитоза клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки.